首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The promoter and upstream region of the Brassica napus 2S storage protein napA gene were studied to identify cis-acting sequences involved in developmental seed-specific expression. Fragments generated by successive deletions of the 5 control region of the napA gene were fused to the reporter gene -glucuronidase (GUS). These constructs were used to transform tobacco leaf discs. Analyses of GUS activities in mature seeds from the transformed plants indicated that there were both negatively and positively acting sequences in the napin gene promoter. Deletion of sequences between –1101 and –309 resulted in increased GUS activity. In contrast, deletion of sequences between –309 and –211 decreased the expression. The minimum sequence required for seed-specific expression was a 196 bp fragment between –152 and +44. Further 5 deletion of the fragment to –126 abolished this activity. Sequence comparison showed that a G box-like sequence and two sequence motifs conserved between 2S storage protein genes are located between –148 to –120. Histochemical and fluorometric analysis of tobacco seeds showed that the spatial and developmental expression pattern was retained in the deletion fragments down to –152. However, the expression in tobacco seeds differed from the spatial and temporal expression in B. napus. In tobacco, the napA promoter directed GUS activity early in the endosperm before any visible activity could be seen in the heart-shaped embryo. Later, during the transition from heart to torpedo stages, the main expression of GUS was localized to the embryo. No significant GUS activity was found in either root or leaf.  相似文献   

2.
To manipulate the quantity and quality of storage components in Brassica napus seeds, we have constructed an antisense gene for the storage protein napin. The antisense gene was driven by the 5-flanking region of the B. napus napin gene to express antisense RNA in a seed-specific manner. Seeds of transgenic plants with antisense genes often contained reduced amounts of napin. In some transgenic plants, no accumulation of napin was observed. However, the total protein content of transgenic and wild-type seeds did not differ significantly. Seeds lacking napin accumulated 1.4 to 1.5 times more cruciferin than untransformed seeds, although the oleosin content was not affected. Fatty acid content and composition in the seeds of transgenic plants were also analyzed by gas chromatography. Though the total fatty acid content of the transformants was the same as that of non-transformants, there was a reduction in 18:1 contents and a concomitant increase of 18:2 in seeds with reduced napin levels. This observed change in fatty acid composition was inherited in the next generation.  相似文献   

3.
Cruciferin (12S globulin) is a large, neutral, oligomeric protein synthesized in rapeseed ( Brassica napus ) during the seed development. It is composed of six subunit pairs. Each pair consists of one heavy α chain (30 kDa) and one light β chain (20 kDa). Four different subunit pairs exist. In contrast to earlier studies, our investigations using two-dimensional electrophoresis showed, that the majority of α and β chains of each subunit are disulfide-linked. Analysis of subunit composition of cruciferin hexamers by ion-exchange chromatography suggested that a large array of hexamers exist, composed of mixed combinations of the four subunits.  相似文献   

4.
5.
Lipase is an important lipolytic enzyme involved in plant lipid metabolism. To analyze its function and roles during seed germination and growth, a full-length cDNA encoding a homologous to lipase gene named BnLIP1 was cloned from Brassica napus, cv. Huyou 15, by rapid amplification of cDNA ends. The BnLIP1 gene had a total length of 1318 bp, with an open reading frame of 1170 bp encoding 389 amino acid residues. Sequence analysis revealed that BnLIP1 protein belonged to the GDSL family of serine esterases/lipases. In B. napus genome, BnLIP1 is represented by several copies with the length of 1601 bp, the gene comprises five exons and four introns. RT-PCR analysis indicated that BnLIP1 showed no tissue-specific expression during reproductive growth and is strongly expressed during seed germination. No expression could be detected until three days after germination, and its peak was registered at the fifth day after germination. In conclusion, BnLIP1-encoded protein is predicted to be a lipolytic enzyme widely expressed at various stages of oilseed rape germination and development. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 3, pp. 410–417. The text was submitted by the authors in English.  相似文献   

6.
Chlorophyllase and peroxidase activities were measured in relation to seed maturation and degreening in canola ( Brassica napus cvs Westar and Alto) and mustard ( Brassica juncea cvs Cutlass and Lethbridge 22A). Samples of seed collected at the same moisture content were pooled, then divided and used for each assay. During maturation the green pigment (chlorophyll and related pigments) content of canola seed decreased linearly and was lower than that measured in mustard at all moisture contents studied, except for the highest and lowest moisture contents. Chlorophyllides and pheophorbides were detected in canola and were essentially absent in mustard. This difference in accumulation of dephytylated pigments infers differences in the pigment degradation pathways in Brassica species. Interspecific differences in the enzymology of degreening were found. Green pigment degradation was associated with increased chlorophyllase activity and low peroxidase activity in canola and low Chlorophyllase and high perosidase activity in mustard. The possible role of ethylene in seed degreening is discussed.  相似文献   

7.
Chlorophyll (Chl) retention by mature seed of canola as the result of an early frost or other environmental factors (the "green seed problem") causes serious economic losses. The relationship of seed degreening to rate of moisture loss by seed and silique and the role of ABA in this process were investigated as a function of developmental age. During the normal predesiccation stage (28–45 days after pollination), seed of Brassica napus (cv. Westar) loses Chl rapidly but seed moisture slowly. After a mild freezing stress, there is a rapid loss of moisture from silique walls, followed by accelerated loss of seed moisture. Chl degradation ceases at 35–45% seed moisture. ABA levels in silique walls of frozen plants (determined by enzyme‐linked immunosorbant assay) increased after freezing, apparently in response to moisture loss. In contrast, ABA levels in the seed increased dramatically 1 day after freezing, then decreased to control levels. The influence of the rate of seed moisture loss on Chl degradation was investigated by fast and slow drying of isolated seed under controlled humidity conditions. Seed dried rapidly at 22% RH retained most of its Chl, whereas seed dried slowly at 86% RH lost Chl as fast or faster than seed on control (unfrozen) plants. In all treatments, Chl loss stopped at about 40% seed moisture.  相似文献   

8.
9.
10.
Cytokinins play an important role in plant development. We investigated the possibility that the nopaline Ti plasmid gene ( tzs ) from Agrobacterium tumefaciens could encode a protein able to participate in plant cytokinin production and lead to alterations in plant phenotype as a result of the expression of endogenous tzs . tzs was placed under the control of a heat‐inducible promoter from the Zea mays hsp70 gene. The expression of this fused gene was examined in transgenic Brassica napus plants. The tzs gene, which encodes the enzyme dimethylallyl transferase, was used as a cytokinin biosynthetic gene. The expression of the tzs gene was monitored by RNA hybridization and analysis of cytokinin content. Overproduction of cytokinin was observed even when the plants had not been heat‐shocked, and the plants displayed a reduced root system, increased height and branching, and delayed flowering. In addition, a significant increase in seed yield was observed in the transgenic plants, accounted for by increased number of seeds per silique and seed weight. The results suggest that increased levels of cytokinins, through the expression of tzs , are correlated with growth rather than with differentiation processes.  相似文献   

11.
12.
The persistence and stability of a transgene encoding a Bacillus thuringiensis (Bt) Cry1Ac insecticidal protein was investigated in hybrids between crop Brassica napus and a recurrent wild Brassica juncea population. Interspecific hybrids (F1) and backcross progenies (BC1, BC2) containing green fluorescent protein (GFP) and Bt genes were successfully produced in the greenhouse. Stable Bt toxin levels were found in hybrid and advanced backcross progenies formed in wild B. juncea. Bt Cry1Ac concentration was significantly lower in BC2 plants than in transgenic B. napus, F1, BC1, while no significant differences were detected among the latter three plant genotypes. A GFP marker gene was used as a scorable marker and indicator of Bt transgene expression. GFP fluorescence intensity was significantly correlated with Bt Cry1Ac concentration at the flowering stage and the pod formation stage in both transgenic oilseed rape hybrids and backcrossed progenies (BC1, BC2). It was demonstrated that GFP was a suitable marker for Bt protein in the backcross of B. juncea, which could facilitate the detection of gene flow and is useful in biosafety management.  相似文献   

13.
We isolated a gene, BnSKP1γ1, expressed in rapeseed (Brassica napus) microspores, which encodes a protein closely related to the Saccharomyces cerevisiae Skp1p protein previously shown to play a role in cell cycle regulation. Twelve SKP1-related genes have already been identified in the Arabidopsis thaliana genome. Using a PCR-based strategy, we isolated three other genes. To date, most data available concerning the function of the SKP1-related genes in plants are indirect. Studies on transgenic A. thaliana plants showthat a 1100-bp BnSKP1γ1 promoter fragment can direct GUS expression in female gametophytes soon after the first haploid mitosis and in male gametophytes from the tetrade stage. No GUS expression can be detected in sporophytic tissues. RT-PCR experiments suggest that this gene is expressed in a similar way in rapeseed. This is the first reported case of a gene exhibiting such an expression pattern in angiosperms. Received: 5 October 1999 / Revision accepted: 28 March 2000  相似文献   

14.
Pod dehiscence in Arabidopsis thaliana is accompanied by an increase in the expression of a polygalacturonase (PG). The gene encoding this mRNA has been characterized and shown to have extensive homology to a similar PG gene from Brassica napus . The A. thaliana PG promoter was fused to β -glucuronidase (GUS) and the expression of this reporter gene analysed in transgenic B. napus plants. The GUS activity was detected throughout the dehiscence zone of pods from 35 d after anthesis and expression was restricted to those cells that undergo cell separation. Expression was also detectable at the junction between the seed and the funicular tissue and in mature anthers of flowers. Transgenic plants containing the PG promoter fused to barnase were sterile as a consequence of the anthers failing to undergo dehiscence. Fertilization of PG-barnase plants resulted in the development of pods that exhibited a reduced capacity to shatter. The role of PG during cell separation processes in plants is discussed.  相似文献   

15.
The levels of certain essential amino acids, in particular cysteine, lysine and methionine, in the seed storage protein of a commercial spring variety of rape, Brassica napus, have been increased by the introduction of an antisense gene for cruciferin, which is the most abundant storage protein in rapeseed. The antisense construct contained part of the cruA gene in an inverted orientation, and the gene was driven by the 5 flanking region of the gene for napin such that antisense RNA was expressed in a seed-specific manner. The construct was introduced by Agrobacterium-mediated gene transfer. In self-pollinated seeds (T1 seeds) of transgenic plants there was a reduction in the levels of the 11 and 2/32/3 subunits of cruciferin, whereas the level of the 44 subunit was unchanged. The total protein and lipid contents of transgenic seeds did not differ significantly from that of normal seeds. Seeds with reduced amounts of cruciferin accumulated higher amounts of napin than non-transformed seeds, but the level of oleosin was unaffected. Amino-acid analysis of the seed storage protein revealed that T1 seeds with reduced amounts of cruciferin contained higher relative levels of three essential amino acids, namely, lysine, methionine and cysteine, with increases of 10%, 8% and 32% over the respective levels in non-transgenic seeds (B. napus cv Westar).  相似文献   

16.
Recently, it has been reported that a gene (PEN1) in Arabidopsis thaliana is highly resistant to Plutella xylostella. We screened all the homologous genes of PEN1 in Arabidopsis thaliana and found that the motif of these genes was very conserved. At present, few insect resistance genes have been identified and characterized in Brassica napus. Therefore, we screened all the homologous genes containing this motif in the Brassica napus genome and systematically analyzed the basic information, conserved domain, evolutionary relationship, chromosomal localization and expression analysis of these genes. In this study, 12 PEN1 homologous genes were identified in the Brassica napus genome, which is more than the number in Arabidopsis thaliana. These genes are unevenly distributed on the 12 chromosomes in Brassica napus. Furthermore, all the PEN1 homologous genes contained light responsiveness elements, and most of the genes contained gibberellin-responsive elements, meJA-responsive elements and abscisic-acid-responsive elements. The results will provide a theoretical basis for screening insect resistance genes from the genome of Brassica napus and analyzing the molecular mechanism of insect resistance in Brassica napus.  相似文献   

17.
In most experimental hybridizations between oilseed rape (Brassica napus) and weedy B. campestris, either intra- or interspecific pollen has been applied to individual flowers. Under field conditions, however, stigmas will often receive a mixture of the two types of pollen, thereby allowing for competition between male gametophytes and/or seeds within pods. To test whether competition influences the success of hybridization, pollen from the two species was mixed in different proportions and applied to stigmas of both species. The resulting seeds were scored for paternity by isozyme and randomly amplified polymorphic DNA analysis. Using data on the proportion of fully developed seeds and the proportion of these seeds that were hybrids, a statistical model was constructed to estimate the fitness of conspecific and heterospecific pollen and the survival of conspecific and heterospecific zygotes to seeds. B. campestris pollen in B. napus styles had a significantly lower fitness than the conspecific pollen, whereas no difference between pollen types was found in B. campestris styles. Hybrid zygotes survived to significantly lower proportions than conspecific zygotes in both species, with the lowest survival of hybrid zygotes in B. napus pods. This is in contrast to the higher survival of hybrid seeds in B. napus than in B. campestris pods when pollinations are made with pure pollen. Altogether, the likelihood of a foreign pollen grain producing a seed was much lower on B. napus than on B. campestris. In addition, pods on B. napus developed to a lower extent the more heterospecific pollen was in the mix, whereas this had no effect on B. campestris.  相似文献   

18.
We have isolated a five-member gene subfamily which encodes cruciferin, a legumin-like 12S storage protein of Brassica napus L., and have analyzed the structure and expression of the family members in developing embryos. Sequence analysis has shown that the coding regions of all five genes are highly similar, with the two most divergent members of the family retaining 89% sequence identity. The analysis of this cruciferin gene family's expression indicates that the developmental pattern of expression of each gene is similar, and the steady-state mRNA levels of each gene are approximately equivalent to each other at all developmental stages.  相似文献   

19.
以甘蓝型油菜( Brassica napus L.)品种‘Westar’和‘Topas’为材料,通过超微结构观察和荧光定量PCR技术对油菜胚胎发育早期油体的发生、油体蛋白及脂肪酸合成转录因子基因的表达情况进行分析。结果显示:油体出现在油菜胚胎发育早期,在授粉9 ~ 11 d后(球形胚时期)的胚体和胚柄中均存在直径小于0. 5 μm的油体;荧光定量实验结果表明,除 BnCLO3 的表达量在整个胚胎发育阶段无明显变化外,其他油体蛋白基因 Oleosins 、 Steroleosins 和 BnCLO1 的表达量在心形胚时期就明显增多并持续增长;脂肪酸合成转录因子 BnLEC1 、 BnL1L 、 BnWRI1 和 BnFUS3 在胚胎发育阶段,基因表达规律均呈先上升再下降的趋势,但达到最高值的时间存在差异,其中 BnLEC1 最早, BnL1L 其次, BnWRI1 和 BnFUS3 较晚。研究结果表明甘蓝型油菜在球形胚时期出现油体,其结构蛋白和转录调控因子基因的表达自心形胚开始明显增多。  相似文献   

20.
通过对甘蓝型油菜花粉发育阶段和活力的检测确定花粉发育的时期,分离出单核晚期花粉进行离体培养.结果表明,(1)筛选出适合油菜小孢子花粉离体培养的液体培养基为T_1+怀特维生素(White's vitamins)+2%椰子汁+0.5 mol/L麦芽糖,在此培养基上花粉的成熟率可达25.1%,萌发率达6.3%.(2)筛选出适合成熟花粉离体萌发液体培养基为0.6 mol/L麦芽糖+1.6 mmol/L硼酸+2.9 mmol/L硝酸钙+29.6 μmol/L VB_1,在此培养基上,自然成熟花粉的萌发率可达75.2%.将离体培养成熟的花粉培养在萌发培养基,萌发的花粉占成熟花粉的66.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号