首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of cytokeratin and vimentin type intermediate filaments were studied in fetal, postnatal, and adult rat testes. Immunocytochemical observations were correlated with the light and electron microscopic analysis of the developing organs. The Sertoli cell precursors in 15-day-old fetal testes contained both cytokeratin and vimentin. A gradual reorganization of both filaments, accompanied by a decrease of cytokeratin-positivity, was observed toward the end of the fetal period. The simultaneous presence of cytokeratin and vimentin in the same cells was shown by double immunofluorescence of newborn testes and the primary culture of dissociated testicular cells. In postnatal Sertoli cells, cytokeratin-positivity continued to decrease and disappeared by the age of 14 days. The increase in vimentin content and the appearance of axially oriented vimentin filaments coincided with the acquisition of the columnar shape of the Sertoli cells. The presence of cytokeratin and vimentin in fetal and newborn testes, and only vimentin in the adult testes was confirmed by immunoblotting. The present results suggest that major qualitative changes in the expression of intermediate filament proteins can take place during the embryonic development. The expression of cytokeratin in developing Sertoli cells, although only transient, supports the epithelial origin of these cells and can be applied as a marker for embryonic and early postnatal Sertoli cells.  相似文献   

2.
The cytoplasmic structure of Sertoli cells of rat testes has been studied by electron microscopy of ultrathin sections. Sertoli cells contain numerous intermediate-sized (7-11 nm) filaments which form a meshwork extending throughout the whole cytoplasm. Often the frequency of such filaments appears especially high in juxtanuclear and cortical regions, including the apical recesses containing the spermatids. Examination of frozen sections of testes by indirect immunofluorescence microscopy using guinea pig antibodies to prekeratin and vimentin has shown the absence of intermediate-sized filaments of the cytokeratin type in all cells of the testes but the presence of filaments of the vimentin type in Sertoli cells as well as in cells of the interstitial space. These results show that the intermediate-sized filaments, abundant in Sertoli cells, are of the vimentin type. In addition we conclude that the "germ epithelium" differs from others true epithelia by the absence of cytokeratin filaments and typical desmosomes and, in Sertoli cells, the presence of vimentin filaments, suggestive of a mesenchymal character or derivation.  相似文献   

3.
Changes in cell cytoskeleton are known to play an important role in differentiation and embryogenesis and also in carcinogenesis. Previous studies indicated that neonatal hepatocytes undergo an epithelial–mesenchymal transition when cultured in a serum-free medium for several days. Here we show by Western blotting of neonatal rat liver cells cultured for 3 days that vimentin and cytokeratin were expressed by these cells. Epidermal growth factor treatment induced high coexpression of vimentin and cytokeratin filaments in hepatocytes from neonatal livers, as detected by double immunofluorescence microscopy. Confocal scanning laser microscopy was used to determine the spatial and cell distribution of cytokeratin and vimentin intermediate filament networks. Vimentin-expressing hepatocytes were mainly located on the periphery of epithelial clusters and presented a migratory morphology, suggesting that vimentin expression was related to the loss of cell–cell contact. Short vimentin filaments were mainly located at the cytoplasmic sites behind the extending lamella. Horizontal and vertical dual imaging of double immunofluorescence with anti-vimentin and anti-cytokeratin antibodies indicated that both filaments colocalize strongly. Three-dimensional reconstruction of serial optical sections revealed that newly synthesized vimentin distributed following the preexisting cytokeratin network and, when present, both filament scaffolds codistributed inside cultured hepatocytes. Immunoelectron microscopy performed in whole-mount-extracted cultured cells revealed that both filaments are closely interrelated but independent. However, a high degree of immunogold colocalization was found in the knots of the filament network. Further experiments with colce- mide and cytochalasin treatment indicated that vimentin filament distribution, but not cytokeratin, was dependent on an intact microtubule network. These results are consistent with a mechanism of vimentin assembly, whereby growth of vimentin intermediate filaments is dependent on microtubules in topographically restricted cytoplasmic sites, in close relation to the cytokeratin cytoskeleton and to changes in cell–cell contact and cell shape.  相似文献   

4.
The metanephric mesenchyme becomes converted into epithelial tubules if cultured in transfilter contact with an inductor tissue. The expression of intermediate filaments (IFs), used as cell-type-specific markers has been studied in this model system for differentiation and organogenesis. In immunofluorescence microscopy of frozen sections, the undifferentiated cells of isolated metanephric mesenchymes uniformly showed IFs of vimentin type only. Also, when cultured as a monolayer, cells from the uninduced mesenchymes showed only vimentin filaments. In frozen sections of transfilter explants, epithelial tubules apparently negative for vimentin could be seen after 3 days in culture, but expression of cytokeratin could not be demonstrated in the developing tubules until the fourth day of culture. Sections of explants cultured further showed tubule cells with distinct fibrillar cytokeratin positivity. The appearance of cytokeratin in the explants was also demonstrated with immunoblotting experiments, using two different cytokeratin antibodies. Expression of IFs was further examined in monolayer cultures of metanephric mesenchymes which had been initially exposed to a short transfilter induction pulse. In these experiments, cytokeratin-positive cells could be demonstrated after a total of 4 days in culture. Double immunofluorescence experiments showed varying amounts of vimentin in the cytokeratin-positive cells: after 4 days in culture, most cytokeratin-positive cells still showed vimentin-positivity although often in a nonfibrillar form. During further culture, gradual disappearance of vimentin-specific fluorescence was observed in cytokeratin-positive cells. The results suggest that the vimentin-positive metanephric mesenchyme cells lose their fibrillar vimentin organization upon induction that leads to kidney tubule formation. This change may be essential for the transformation from an undifferentiated mesenchymal cell into a specialized epithelial cell. Cytokeratin filaments, regarded as a marker for epithelial cells, seem to appear simultaneously with or soon after the change in vimentin organization. These changes in IF expression also occur in monolayer cultures of mesenchyme cells initially exposed to a short transfilter induction pulse. This suggests that epithelial differentiation, as revealed by the emergence of cytokeratin positivity, may occur even in the absence of a clear morphological differentiation and three-dimensional organization of the cells.  相似文献   

5.
Cytoplasmic filaments in fetal and neonatal pig testis   总被引:1,自引:0,他引:1  
Leydig cells in developing fetal pig testis contained during the fetal regressive phase large accumulations of intermediate filaments. Before and after this period these filaments were arranged in a criss-cross fashion. In the pig as well as in the dog testis these filaments have been characterized as vimentin. Within the vimentin aggregates occasionally a weak positive actin reaction was seen in pig but not in dog Leydig cells. Microfilaments were hardly observed. Most Sertoli cells contained a layer of actin microfilaments close to the basal cell membrane. In the lower cell compartment and around the nucleus (intermediate) vimentin filaments could be observed in a criss-cross configuration.  相似文献   

6.
The presence and distribution of desmin, vimentin, cytokeratin, and laminin in the gonads of developing male rat embryos (11-17 days) were studied by immunocytochemistry. The findings were correlated with morphological changes of the cells and with the formation of basement membranes, as determined by electron microscopy. The surface epithelial and subepithelial cells of the meesonephros in the prospective gonadal region contained desmin. At the onset of gonadal development, vimentin appeared in the somatic cells of the thickening surface epithelium, which formed the gonadal ridge. Desmin disappeared and cytokeratins appeared in the Sertoli precursor cells at the inception of their epithelial differentiation. Simultaneously, the prospective Sertoli cells became polarized during their assembly into epithelial cell aggregates; the aggregates then fused and formed elongated testicular cords. The epithelial cell differentiation was accompanied by a deposition of basement membrane material around the cords and by an increase of desmin in the cells immediately around the cords. With further differentiation of the testicular cords, some cytokeratins from the Sertoli cells, but not from the cells of the rete cords, disappeared. On the other hand, other cytokeratin polypeptides and vimentin remained in the fetal Sertoli cells. The surface cell layer slowly differentiated towards a proper epithelium after the basic formation of the testicular cords and interstitium. Desmin and vimentin persisted in the interstitial cells throughout the entire study period. The early differentiation of the gonad is apparently under a general sex-independent initiation program. The developmental changes in intermediate filaments offer an opportunity for the further analysis of their general role in early organogenesis. In light of the genetic theory of testicular differentiation, the functions of the regulatory factor(s) include specific organization of cord cells, histological organization into looping cords rather than separated follicles, and male development of the interstitium, surface epithelium and tunica albuginea.  相似文献   

7.
Mesonephric and paramesonephric ducts develop in different ways in male and female fetuses. We have analyzed the changes in the expression of cytokeratin and vimentin type of intermediate filaments and desmosomal plaque proteins in progressing and regressing genital ducts of rat fetuses. The concomitant changes in the basement membranes were detected by laminin antibody. Epithelial cells of the indifferent (Day 15) male and female mesonephric and paramesonephric ducts contained faint vimentin positivity which, however, later disappeared. Indifferent mesonephric duct epithelium stained strongly for cytokeratin, whereas in the corresponding paramesonephric duct only a weak and spotty positivity was seen. Immunocytochemical localization of cytokeratin filaments and desmosomal plaque proteins correlated with the ultrastructural differences in the apical junctional complexes of the mesonephric and paramesonephric ducts. Regardless of the ongoing regression of the male paramesonephric duct, cytokeratin positivity increased in the disorganizing epithelium; the most weak and a granular immunoreaction was seen in the cells found in the intensively vimentin-positive periductal mesenchyme. In the regressing female mesonephric duct cytokeratin positivity was lost before the final dissolution of the basement membrane. Immunoblotting analysis of cytokeratin and vimentin polypeptides of the individual genital ducts were in agreement with the immunocytochemical results obtained in 15- and 16-day-old fetuses. The results suggest that the expression of vimentin type intermediate filaments is an indication of the mesothelial origin of the genital ducts. The increase in cytokeratin positivity of the regressing paramesonephric duct epithelium suggests that the degenerative changes are initiated by the mesenchyme. Cytokeratin-positive cells found in the periductal mesenchyme of the male paramesonephric duct may be epithelial cells transforming into mesenchyme. The results emphasize a close relationship between the changes of the intermediate filament system and extracellular matrix upon differentiation of the fetal genital ducts.  相似文献   

8.
Summary A light and electron microscope immunocytochemical study and Western blotting analysis has been performed on intermediate filaments (vimentin, desmin and cytokeratins) in the testis of the teleost fish Gambusia affinis holbrooki. An immunoreaction to vimentin was observed in the epithelium of the efferent ducts, testicular canal and their surrounding peritubular cells. Positive vimentin immunostaining was also observed in the cells located around seminiferous tubules (boundary cells), Leydig cells, interstitial fibroblasts, chromatophores, and blood vessel endothelial cells. In contrast to mammals, no vimentin immunoreactivity was found in the Sertoli cells. Immunoreactivity to desmin was weak in the epithelial cells of the efferent ducts and testicular canal and intense in the peritubular cells that surrounded these ducts. Desmin immunoreactivity was also observed in the seminiferous tubule boundary cells. The immunoreactivity was weak in the boundary cells that surrounded germ cell cysts containing spermatogonia or spermatocytes and intense in the boundary cells around cysts with elongated or mature spermatids. Immunoreactivity towards cytokeratins was observed only in testicular blood vessels. Cytokeratin immunolabelling was intense in the endothelium and weak in the vascular smooth muscle cells. No cytokeratin immunoreactivity was found in the Sertoli cells, germ cells, interstitial cells or in the efferent duct epithelium. The absence of intermediate filaments in the Sertoli cells, the absence of cytokeratins in the epithelium of the sperm excretory ducts, and the presence of desmin filaments in these epithelial cells are the most important differences with regards to the intermediate filament phenotype in mammalian testes.  相似文献   

9.
Cultures of rete testis epithelial cell-enriched preparations from testes of adult rams have been investigated, and some of their properties have been determined. In monolayers, the cells form mosaic-like borders, and retain many ultrastructural features characteristic of rete epithelial cells in situ, including an indented nucleus with prominent heterochromatin clumps, short rod-shaped or round mitochondria that are easily distinguished from the elongated mitochondria of Sertoli cells, the presence of desmosomes, and few if any lipid droplets or vacuoles. Unlike Sertoli cell-enriched aggregates in culture, rete testis epithelial cell preparations do not form cytoplasmic extensions, and no associated germ cells are present. Rete cells in culture express cytokeratin and vimentin in the cytoskeleton, whereas Sertoli cells prepared from testes of adult rams contain vimentin but not cytokeratin. Both rete cells and Sertoli cells stain positively for laminin but not for fibronectin, Collagen Type I, or Collagen Type III. The rete cells synthesize and secrete several proteins into the culture medium, evident in gel electrophoresis patterns of radiolabeled proteins. This pattern is similar, but not identical, to that secreted by Sertoli cell-enriched preparations. Rete cells in culture in the presence of serum continue to undergo mitotic division, but Sertoli cells do not. A variety of criteria were employed to estimate the relative numbers of Sertoli cells present in the rete testis epithelial cell-enriched preparations from testes of adult rams, including morphological and ultrastructural differences between the two cell types, and the presence of desmosomal proteins and cytokeratin in rete cells but not in Sertoli cells. The relative number of fibroblast-like cells was determined by measuring the expression of fibronectin and Collagen Type I, and an immunocytochemical probe for the detection of Factor VIII was used to estimate the degree of contamination by vascular endothelial cells. Using these markers, we determined that the rete testis epithelial cell-enriched preparations were about 93% pure. Primary cultures under defined conditions contained relatively few Sertoli cells (0.4%), but were contaminated to a larger extent by fibroblast-like cells (approximately 4%) and by endothelial cells (about 3%). The possible functions of rete testis epithelial cells are discussed herein.  相似文献   

10.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11--20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to--and specific for--epithelial cells; vimentin filaments are seen--at this stage of embryogenesis--only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structurees provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

11.
Ceacam6 (carcinoembryonic antigen-related cell adhesion molecule 6 gene) has recently been isolated by differential display followed by RT-PCR and DNA sequence analyses. Ceacam6 is a member of an immunoglobulin superfamily and encodes a protein of 266 amino acid residues possessing one immunoglobulin (Ig)-like domain. RT-PCR analysis showed that Ceacam6 was dominantly expressed in rat testis and its expression level prominently increased after 6 wk of postnatal development in testis. Immunohistochemical analyses using the anti-CEACAM6 antibody revealed that CEACAM6 colocalized with intermediate filaments (vimentin) in Sertoli cells and interstitial cells. The association between CEACAM6 and vimentin was observed throughout postnatal development in rat testis. Transfection experiments performed in COS-7 cells suggested that overexpression of CEACAM6 brought about aggregation of vimentin filament around nuclei with which CEACAM6 colocalized and that the N-terminus region of CEACAM6, including the Ig-like domain, seemed to be required for association with vimentin filaments. Interaction between CEACAM6 and vimentin in rat testis and transfected COS-7 cells was confirmed by immunoprecipitation. Our observations strongly suggested that CEACAM6 might be a novel intermediate filament-associated protein involved in regulation of vimentin architecture in Sertoli cells.  相似文献   

12.
The location of constitutive proteins of different types of intermediate-sized (about 10 mm) filaments (cytokeratin, vimentin, desmin, brain filament protein) was examined in various tissues of 11–20 day chick embryos, using specific antibodies against the isolated proteins and immunofluorescence microscopy on frozen sections and on isolated serous membrane. The tissues studied which contained epithelia were small intestine, gizzard, esophagus, crop, liver, kidney, thymus, mesenteries, and epidermis. The results show that the different intermediate filament proteins, as seen in the same organ, are characteristic of specific lines of differentiation: Cytokeratin filaments are restricted to – and specific for – epithelial cells; vimentin filaments are seen – at this stage of embryogenesis – only in mesenchymal cells, including connective tissue, endothelial and blood cells, and chondrocytes; filaments containing protein(s) related to the subunit protein prepared from gizzard 10 nm filaments (i.e., desmin) are significant only in muscle cells; and intermediate filament protein of brain, most probably neurofilament protein, is present only in nerve cells. We conclude that for most tissues the expression of filaments of cytokeratin, vimentin, desmin, and neurofilament protein is mutually exclusive, and that these protein structures provide useful markers for histochemical and cytochemical differentiation of cells of epithelial, mesenchymal, myogenic, and neurogenic differentiation.  相似文献   

13.
Ten nephroblastomas were investigated by antibodies to intermediate filaments. In seven cases, which in light microscopy were characterized by the presence of blastema and tubules, immunofluorescence microscopy with IF-specific antibodies reveals expression of cytokeratin and vimentin in blastema cells, while tubules were only labelled by the cytokeratin antibodies. This result was independent of whether the conventional cytokeratin antibody or monoclonal antibodies specific for cytokeratin 18 were used. Stroma cells were vimentin-positive. In two cases nephroblastomas were undifferentiated and also lacked tubuli formation. In both these tumors blastema cells were vimentin-positive and cytokeratin-negative. Finally one case of clear cell sarcoma of the kidney could only be labelled by the vimentin antibody. Thus antibodies to intermediate filaments seem to be useful tools to distinguish nephroblastomas from neuroblastomas or rhabdomyosarcomas, especially in cases of metastasis.  相似文献   

14.
Intermediate filaments are one of the three major cytoskeletons. Some roles of intermediate filaments in cellular functions have emerged based on various diseases associated with mutations of cytokeratins. However, the precise functions of intermediate filament are still unclear. To resolve this, we manipulated intermediate filaments of cultured cells by expressing a mutant cytokeratin. Arginine 89 of cytokeratin18 plays an important role in intermediate filament assembly. The expression of green fluorescent protein-tagged cytokeratin18 arg89cys induced aggregations and loss of the intermediate filament network composed of cytokeratins in liver-derived epithelial cells, Huh7 and OUMS29, but only induced the formation of cytokeratin aggregates and did not affect the intermediate filament network of endogenous vimentin in HEK293. The expression of this mutant affected the distribution of Golgi apparatus and the reassembly of Golgi apparatus after perturbations by nocodazole or brefeldin A in both Huh7 and OUMS29, but not in HEK293. Our data show that loss of the original intermediate filament network, but not the existence of cytokeratin aggregates, induces redistribution of the Golgi apparatus. The original intact intermediate filament network is necessary for the organization of Golgi apparatus.  相似文献   

15.
Bovine tracheal gland (BTG) cells in culture show an epithelial-fibroblastoid transition after several passages. To investigate these BTG cell phenotype changes, we studied the effects of both the culture medium and passage number on the expression of epithelial cytoskeletal proteins and glandular serous cell markers. We also analyzed the intracellular cAMP level in the basal state and after adrenergic stimulation. Three culture media were used: 1) serum-free defined medium (SFDM); 2) medium supplemented with 2% Ultroser G; and 3) medium supplemented with 10% fetal calf serum (FCS). Using immunofluorescence microscopy, we showed that, in the first 4 passages whatever the culture conditions, BTG cells expressed immunoreactivities to cytokeratin filaments and desmoplakins I and II, whereas vimentin filaments were not detected. After four passages, BTG cells cultured in 10% FCS or 2% Ultroser G became progressively fibroblastoid and showed immunoreactivities to both vimentin and cytokeratin intermediate filaments. No immunoreactivity to vimentin filaments was observed on BTG cells cultured in a SFDM. Using biochemical analysis, we showed that basal levels of cAMP in cultured BTG cells and lysozyme secretion by these cells vary according to the culture medium and passage number. It was higher in BTG cells cultured in a SFDM compared to that recovered from cells cultured in medium supplemented with Ultroser G or FCS. Whatever the culture medium, BTG cells responded to stimulation by isoproterenol. However, the results of stimulation in a SFDM were higher than in Ultroser G or FCS supplemented medium. We conclude that the BTG epithelial cell organization and the regulation of biosynthesis of secretory proteins by these cells in culture depend on both the culture medium and passage number.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Immunofluorescence microscopy has been used to follow the rearrangement of intermediate-sized filaments during mitosis in rat kangaroo PtK2 cells. These epithelial cells express two different intermediate filament systems: the keratin-related tonofilament-like arrays typical of epithelial cells, and the vimentin-type filaments characteristic of mesenchymal cells in vivo, and of many established cell lines. The two filament systems do not appear to depolymerize extensively during mitosis, but show differences in their organization and display which may indicate different functions. The most striking rearrangements have been seen with the vimentin filaments, and in particular in prometaphase a transient cage-like structure of vimentin fibers surrounding the developing spindle is formed. In metaphase, this cage disappears, and vimentin fibers are found in an elliptical band surrounding the chromosomes and the interzone. In telophase, these bands separate, usually breaking first on the side closest to where the cleavage furrow has started to form. Double label experiments with tubulin and vimentin antibodies have indicated that the microtubules and the chromosomes are contained within the thick crescents of vimentin filaments and suggest that the vimentin intermediate filaments may be involved in the orientation of the spindle and/or the chromosomes during mitosis. In contrast, extensive arrays of cytokeratin filaments are present throughout mitosis on the substrate-attached side of the cell and also in other cellular areas, although they are usually not present in the spindle region. Thus the cytokeratin filaments probably continue to play a cytoskeletal role during mitosis and may be responsible for the flat shape that certain epithelial cells such as PtK2 cells continue to maintain during mitosis.  相似文献   

17.
Recently, bovine pulmonary microvascular endothelial cells (PMV) were shown to contain cytokeratin 8 and 19 intermediate filaments (Patton et al., 1990). In this study, we examine the effect of culture contiguity and vasoactive agents on the content and assembly of cytokeratins in PMV. Immunofluorescent staining of PMV cultures show a progressive increase in cytokeratin filament assembly. In freshly plated PMV, keratin appears as hazy staining (less than 4 hr) and later organizes into keratin 'plaques' (4 days) associated with cell-cell contacts; post confluent (greater than 7 days) PMV cultures contain fully assembled cytokeratin filaments which extend to the cell periphery and approach filaments in apposed cells. Vimentin filaments are also present in freshly plated PMV cultures but unlike cytokeratins, become less filamentous at confluency. This cell density-dependent modulation of cytokeratins is also demonstrated by densitometric analysis of autoradiographs of 35S-methionine labeled keratins in which PMV keratin content is elevated at high cell densities, while vimentin content remains constant. Desmoplakins I and II, components of desmosomes, could not be demonstrated in PMV by immunoblotting. PMV treated with permeability modulating agents (4 x 10(-3) M EGTA, 1 microM cytochalasin B, 1 microM bradykinin, 1 microM A23187, and 1 microM PMA) exhibit border retraction and altered keratin filament staining. From these studies we conclude: 1) cytokeratin 8 and 19 containing intermediate filaments are present in confluent PMV cultures with vimentin but without desmosomes, 2) the state of assembly of PMV cytokeratin and vimentin filaments appears to be oppositely affected by culture contiguity, and 3) treatment of monolayers with vasoactive agents alters the state of assembly of cytokeratin filaments. We speculate that modulation of cytokeratin assembly in PMV may be involved in regulation of pulmonary microvascular structure and function.  相似文献   

18.
The aim of the present study was to evaluate the morphology and intermediate filaments cytokeratin, desmin and vimentin expression in the kidneys of the polar fox (Alopex lagopus). Routine morphological, histochemical and immunohistochemical techniques of examinations of the kidneys of adult male and female polar foxes were used. We found different localizations and different levels of immunoexpression of cytokeratin in epithelia of calyxes, distal tubules and Henle's loops, and also in endothelial cells. We also noted immunolocalization and immunoexpression of vimentin in mesangial cells, interstitial tissue and distal tubules. Desmin reactivity was revealed for muscle cells of arteries and mesangial cells. Our study is the first attempt to localize cytoskeletal intermediate filaments performed on polar fox kidneys. It is worth noting that our observations concerning the distribution of vimentin in the polar fox kidney may suggest that protein as being useful as a marker of distal tubules in the polar fox kidney.  相似文献   

19.
Abstract. The development and sexual differentiation of gonads in female rat embryos and fetuses between the ages of 11 and 17 days was studied by immunocytochemical analysis of intermediate filament proteins and laminin by light and electron microscopy. In the 11-day-old pregonadal embryo, the surface epithelial cells in the ventral cortex of the mesonephros contained desmin but not cytokeratin or vimentin. The development of the gonad began on the following day by proliferative growth of the mesonephric surface cells, which like the subepithelial cells soon expressed vimentin in addition to desmin. The differentiation continued by formation of separate epithelial cell clusters, which joined into cords, irregular in shape and size. Desmin disappeared from the cord cells and cytokeratins appeared while vimentin remained in all somatic cell types. Desmin was especially abundant in some stromal cells adjacent to the epithelial tissues. After the segration of the basic ovarian tissues, vimentin and desmin decreased and cytokeratins appeared in the surface epithelial cells. New changes in cytokeratin expression appeared with the differentiation of the embryonic cords in a sex-specific manner with gradual decrease of reactivity for cytokeratin 18. No immunoreaction to the neurofilament proteins was found at the present ages, and the germ cells were negative for intermediate filaments. The results show that desmin is expressed in several primitive ovarian and mesonephric cells even though they are not myogenic. The sexual differences emerge after the incipient formation of the genetically female gonad, as different organization of the internal epithelial tissue with different timing of changes in intermediate filament proteins when compared with the male gonad.  相似文献   

20.
Summary The intermediate filaments of most epithelial cells in vivo consist solely of cytokeratins. Using monoclonal antibodies to vimentin or keratin, we have examined the expression of vimentin in homologous specimens of frozen tissue sections and primary cultures of normal human mammary epithelium. In frozen sections, only epithelial cells reacted with the antikeratin antibody, whereas antivimentin reactivity was associated with stromal cells. All epithelial cultures were positive for cytokeratin and in addition coexpressed vimentin as strongly as cultured fibroblasts and as early as the 4th d after initiation of the culture. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis of cytoskeletal preparations of secondary cultures of normal mammary epithelium have also demonstrated the appearance of a moiety identical to the vimentin found in cultured fibroblasts. Our observations are consistent with the hypothesis that vimentin expression is induced, possibly as a result of changes in cell shape or growth rate, when cells are freed from three-dimensional restirctions imposed by the tissue of origin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号