共查询到20条相似文献,搜索用时 15 毫秒
1.
J J Reiners A R Cantu A Sch?ller 《Biochemical and biophysical research communications》1992,186(2):970-976
Epidermal 7-ethoxyresorufin O-deethylase (EROD) activity was elevated greater than 100-fold within 4 to 7 h of topical treatment of SENCAR mice with 100 nmol dibenz[a,c]anthracene (DB[a,c]A). Treatment of skin with 2 micrograms of 12-O-tetradecanoylphorbol-13-acetate (TPA) 2 to 8 h prior to DB[a,c]A application suppressed induction by 80%. Suppression was dose-dependent over the range of 0.01 to 5 micrograms TPA (ID50 approximately 0.6 nmol). EROD activities in normal and TPA-treated epidermis paralleled steady state P450 CYP1A1 mRNA content. Analogs of TPA incapable of activating or down-regulating protein kinase C (PKC) did not suppress induction. Pretreatment of skin with sn-1,2-didecanoylglycerol, an activator of PKC which causes translocation but no down-regulation, did not suppress EROD induction. However, induction was suppressed by chrysarobin, an anthralin analog that causes PKC down-regulation in the absence of prior activation. These studies suggest that PKC participates in the processes associated with Cyp1a-1 induction and that TPA effects Cyp1a-1 induction through its down-regulation of PKC. 相似文献
2.
M M Harnett M J Holman G G Klaus 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(11):3831-3836
Co-stimulation of B lymphocytes with IL-4 plus nonmitogenic concentrations of anti-Ig antibodies, or protein kinase C (PKC) activators, drives resting B cells into DNA synthesis. Although cross-linking of the sIg receptors provokes the generation of the intracellular second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol, the molecular mechanism utilized by IL-4R in murine B cells has not, as yet, been defined. In human B cells IL-4 has been shown to induce a transient rise in IP3 followed by a sustained elevation of cAMP. However, in murine B cells, IL-4 does not induce the release of IP3, Ca2+ mobilization, PKC translocation, or indeed modify signaling via the phosphoinositide pathway induced by ligation of sIg receptors. We now present evidence that, in murine B cells, IL-4 synergizes with nonmitogenic concentrations of anti-Ig to provoke translocation of PKC from the cytosol to membranes. In addition, the lymphokine up-regulates PKC levels and activity and prevents phorbol ester-induced PKC down-regulation in B cells. We therefore propose that (unknown) signals generated via IL-4R potentiate and/or prolong sIg-induced PKC activation. These observations may therefore provide a biochemical basis for explaining how IL-4 and anti-Ig synergize to induce B cell activation. 相似文献
3.
A Ando K Momomura K Tobe R Yamamoto-Honda H Sakura Y Tamori Y Kaburagi O Koshio Y Akanuma Y Yazaki 《The Journal of biological chemistry》1992,267(18):12788-12796
We have studied the function of a mutant human insulin receptor in which two COOH-terminal autophosphorylation sites (Tyr-1316 and -1322) were replaced by phenylalanine (F/Y COOH-terminal 2 tyrosines (CT2)). In addition, we have also constructed a mutant receptor in which Lys-1018 in the ATP-binding site was changed to arginine (R/K 1018). Both the wild type insulin receptor (HIR) and the mutant receptors were expressed in Chinese hamster ovary (CHO) cells by stable transfection. Autophosphorylation of solubilized and partially purified F/Y CT2 was decreased by approximately 30% compared with the HIR. Tyrosine kinase activities of F/Y CT2 and HIR toward exogenous substrates were almost equal. When CHO cells transfected with F/Y CT2 (CHO-F/Y CT2) were stimulated with insulin, autophosphorylation of the beta-subunit of the insulin receptor and the phosphorylation of an endogenous substrate (pp185) in the intact cell were normal compared with cells expressing HIR (CHO-HIR). CHO-F/Y CT2 exhibited the same insulin sensitivity as CHO-HIR with respect to 2-deoxyglucose uptake. However, the dose-response curve of insulin-stimulated thymidine incorporation in CHO-F/Y CT2 was shifted to the left (approximately 5-7-fold) compared with that in CHO-HIR. There was no significant difference in insulin-like growth factor 1-stimulated thymidine incorporation between CHO-F/Y CT2 and CHO-HIR. Furthermore, the dose-response curve of insulin-stimulated kinase activity toward myelin basic protein in CHO-F/Y CT2 was also shifted to the left (approximately 5-fold) compared with that in CHO-HIR. Kinase assays in myelin basic protein-containing gels revealed that both species of MAP kinases (M(r) 44,000, 42,000) were more sensitive to activation by insulin in CHO-F/Y CT2 than in CHO-HIR. This observation was confirmed in immune complex kinase assays toward microtubule-associated protein 2 (MAP2) using specific antibodies against mitogen-activated protein (MAP) kinase. R/K 1018 mutant insulin receptors showed an absence of insulin-stimulated kinase activity and CHO cells transfected with R/K 1018 (CHO-R/K 1018) failed to enhance 2-deoxyglucose uptake or thymidine incorporation in response to insulin. In addition, R/K 1018 kinase-defective insulin receptors were unable to mediate insulin-stimulated MAP kinase activation. These data suggest that: 1) tyrosine kinase activity of the insulin receptor is required for activation of insulin-stimulated MAP kinases and 2) phosphorylation of COOH-terminal tyrosine residues may play an inhibitory role in mitogenic signaling through regulation of MAP kinases. 相似文献
4.
Phorbol ester receptors and protein kinase C in primary neuronal cultures: development and stimulation of endogenous phosphorylation 总被引:6,自引:0,他引:6 下载免费PDF全文
S K Burgess N Sahyoun S G Blanchard H LeVine K J Chang P Cuatrecasas 《The Journal of cell biology》1986,102(1):312-319
Embryonic rat neurons cultured in defined medium, essentially in the absence of glia, were highly enriched in phorbol ester receptors. The neurons displayed a single class of phorbol 12,13-dibutyrate binding sites with a maximum binding capacity, after 10 d in culture, of 18.6 pmol/mg protein and an apparent dissociation constant of 7.1 nM. Phorbol ester binding sites were associated with protein kinase C, which represented a major protein kinase activity in primary neuronal cultures. Ca2+-phosphatidylserine-sensitive phosphorylation of endogenous substrates was more marked than that observed in the presence of cyclic AMP or Ca2+ and calmodulin. Phorbol ester receptors and protein kinase C levels were critically dependent on the culture age. Thus, about a 20-fold increase in binding sites occurred during the first week in culture and was accompanied by a corresponding increase in Ca2+-phosphatidylserine-sensitive protein phosphorylation in soluble neuronal extracts. These changes largely paralleled a similar rise in phorbol ester binding during fetal development in vivo. The apparent induction of phorbol ester receptors was specific relative to other cellular proteins and could be inhibited by cycloheximide or Actinomycin D. Phosphorylation of endogenous substrates in intact cultured neurons paralleled the age-dependent increase in protein kinase C. Furthermore, 32P incorporation into several major phosphoproteins was markedly augmented by treating the neuronal cultures with phorbol esters. Such phosphorylation events may provide a clue to the significance of protein kinase C in developing neurons. 相似文献
5.
Phorbol esters, but not insulin, promote depletion of cytosolic protein kinase C in rat adipocytes 总被引:5,自引:0,他引:5
B P Glynn J W Colliton J M McDermott L A Witters 《Biochemical and biophysical research communications》1986,135(3):1119-1125
The tumor-promoting phorbol esters have insulinomimetic effects in several tissues. Employing two different assay systems, we have compared the effects of phorbol ester and insulin on the activity and intracellular distribution of the Ca++ and phospholipid dependent protein kinase (protein kinase C) in isolated rat adipocytes. Phorbol ester leads to a prompt depletion of kinase activity from the cytosolic fraction and appearance of activity in membrane extracts; neither of these effects is mimicked by insulin. These results, taken together with other data, emphasize important divergences between the actions of these agonists and suggest that changes in protein kinase C activity or intracellular distribution are not a necessary concomitant of the cascade of insulin action. 相似文献
6.
R L McSwine-Kennick E M McKeegan M D Johnson M J Morin 《The Journal of biological chemistry》1991,266(23):15135-15143
In an HL-60 cell subline (PR-17) which was greater than 100-fold resistant to the differentiating and cytostatic activities of phorbol 12-myristate 13-acetate (PMA), the protein kinase C phenotype was found to be nearly identical to that of wild-type HL-60 cells. A measurable decrease (30%) in the specific activities of crude preparations of PR-17 cell protein kinase C was observed when the enzyme was measured with histone as the phosphate acceptor substrate, but other aspects of the protein kinase C phenotype (intracellular concentrations and binding affinities of phorbol diester receptors, translocation of activated enzyme from cytosolic to particulate subcellular fractions, relative expression of the alpha and beta isozyme proteins) were equivalent in both PMA-resistant PR-17 cells and in wild-type HL-60 cells. Direct analysis of the behavior of the alpha and beta isozymes after the exposure of each cell type to 100 nM PMA for 12 h revealed that the activities and intracellular concentrations of both isozymes were downregulated to an equivalent extent in both wild-type and PMA-resistant cells. These results suggest that the cellular basis for the resistance to the effects of PMA was present "down-stream" from the activation and down-regulation of protein kinase C and was perhaps a nuclear component. Among the genes which were likely to be differentially regulated when each of the two cell lines were treated with PMA were those for the protein kinase C isozymes themselves. In wild-type HL-60 cells, the intracellular concentrations of type HL-60 cells, the intracellular concentrations of mRNA for each of the beta isozymes were increased (up to 5-fold) 48 h after the initiation of PMA treatment; further studies indicate that an activator of protein kinase C could influence the expression of HL-60 cell protein kinase C genes in an isozyme-specific manner. Comparable PMA-induced alterations in mRNA levels were not observed in PMA-resistant cells, even under conditions of significant activation and subsequent down-regulation of protein kinase C protein. Taken together, these data suggest that activation and down-regulation of the isozymes of protein kinase C may not represent absolute determinants of the PMA-induced differentiation of HL-60 cells, but that specific alterations in the levels of the mRNA for the beta isozymes of protein kinase C, or of other genes which may be regulated by the activated kinase isozymes, are important to the induction of leukemia cell differentiation by PMA. 相似文献
7.
Data concerning the short- and longterm effects of ovariectomy on the levels of estrogen binding sites in the rat uterus and liver are presented. The information increases the understanding of the regulation of estrogen receptor synthesis. The circulating estrogen level is suggested to affect receptor synthesis in the uterus and liver differently. Shortly after gonadectomy (2–20h), an elevation in the concentration of cytoplasmic binding sites in the uterus of 35% was observed, whereas no effect was seen in the liver cell. A longer period of time after ovariectomy (2–3 months) caused a reduction in the number of uterine receptor sites by 74%, whereas in the liver an increase of 84% was detected. 相似文献
8.
9.
10.
11.
S Shenolikar E W Karbon S J Enna 《Biochemical and biophysical research communications》1986,139(1):251-258
The effect of phorbol esters on cyclic AMP production in rat cerebral cortical slices was studied using a prelabelling technique to measure cyclic nucleotide accumulation. Cholera toxin-stimulated cyclic AMP accumulation was enhanced approximately 2-fold by phorbol 12-myristate, 13-acetate (PMA) which alone had no effect on cyclic AMP production. The augmentation by PMA was maximal within the first hour of incubation, decreasing progressively thereafter. Protein kinase C activity was decreased 80-90% during a 3 hr exposure to PMA, as was 3H-phorbol 12,13-dibutyrate binding. Both phosphatidyl serine and arachidonic acid were found to enhance protein kinase C activity in a concentration-dependent manner, an effect that was attenuated by prolonged incubation of the brain tissue with PMA. The results indicate that exposure of brain slices to phorbol esters causes a down-regulation of rat brain protein kinase C, and that this modification corresponds with a decrease in the ability of PMA to augment cyclic AMP production, suggesting a functional relationship between the two systems in rat brain. 相似文献
12.
The COOH-terminal domain of wild-type Cot regulates its stability and kinase specific activity 下载免费PDF全文
Gándara ML López P Hernando R Castaño JG Alemany S 《Molecular and cellular biology》2003,23(20):7377-7390
Cot, initially identified as an oncogene in a truncated form, is a mitogen-activated protein kinase kinase kinase implicated in cellular activation and proliferation. Here, we show that this truncation of Cot results in a 10-fold increase in its overall kinase activity through two different mechanisms. Truncated Cot protein exhibits a lower turnover rate (half-life, 95 min) than wild-type Cot (half-life, 35 min). The degradation of wild-type and truncated Cot can be specifically inhibited by proteasome inhibitors in situ. The 20S proteasome also degrades wild-type Cot more efficiently than the truncated protein. Furthermore, the amino acid 435 to 457 region within the wild-type Cot COOH-terminal domain confers instability when transferred to the yellow fluorescent protein and targets this fusion protein to degradation via the proteasome. On the other hand, the kinase specific activity of wild-type Cot is 3.8-fold lower than that of truncated Cot, and it appears that the last 43 amino acids of the wild-type Cot COOH-terminal domain are those responsible for this inhibition of kinase activity. In conclusion, these data demonstrate that the oncogenic activity of truncated Cot is the result of its prolonged half-life and its higher kinase specific activity with respect to wild-type Cot. 相似文献
13.
14.
Phorbol ester-induced actin assembly in neutrophils: role of protein kinase C 总被引:17,自引:1,他引:17 下载免费PDF全文
The shape changes and membrane ruffling that accompany neutrophil activation are dependent on the assembly and reorganization of the actin cytoskeleton, the molecular basis of which remains to be clarified. A role of protein kinase C (PKC) has been postulated because neutrophil activation, with the attendant shape and membrane ruffling changes, can be initiated by phorbol esters, known activators of PKC. It has become apparent, however, that multiple isoforms of PKC with differing substrate specificities exist. To reassess the role of PKC in cytoskeletal reorganization, we compared the effects of diacylglycerol analogs and of PKC antagonists on kinase activity and on actin assembly in human neutrophils. Ruffling of the plasma membrane was assessed by scanning EM, and spatial redistribution of filamentous (F)-actin was assessed by scanning confocal microscopy. Staining with NBD-phallacidin and incorporation of actin into the Triton X-100-insoluble ("cytoskeletal") fraction were used to quantify the formation of (F)-actin. [32P]ATP was used to detect protein phosphorylation in electroporated cells. Exposure of neutrophils to 4 beta-PMA (an activator of PKC) induced protein phosphorylation, membrane ruffling, and assembly and reorganization of the actin cytoskeleton, whereas the 4a-isomer, which is inactive towards PKC, failed to produce any of these changes. Moreover, 1,2-dioctanoylglycerol, mezerein, and 3-(N-acetylamino)-5-(N-decyl-N-methylamino)-benzyl alcohol, which are nonphorbol activators of PKC, also promoted actin assembly. Although these effects were consistent with a role of PKC, the following observations suggested that stimulation of conventional isoforms of the kinase were not directly responsible for actin assembly: (a) Okadaic acid, an inhibitor of phosphatases 1 and 2A, potentiated PMA-induced protein phosphorylation, but not actin assembly; and (b) PMA-induced actin assembly and membrane ruffling were not prevented by the conventional PKC inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, staurosporine, calphostin C, or sphingosine at concentrations that precluded PMA-induced protein phosphorylation and superoxide production. On the other hand, PMA-induced actin assembly was inhibited by long-chain fatty acid coenzyme A esters, known inhibitors of nuclear PKC (nPKC). We conclude that PMA-induced actin assembly is unlikely to be mediated by the conventional isoforms of PKC, but may be mediated by novel isoforms of the kinase such as nPKC. 相似文献
15.
16.
Normal keratinocytes, SV40-transformed keratinocytes (SVK14), and various squamous carcinoma cell (SCC) lines have been used as an in vitro model system to study the properties of phorbol ester receptor and protein kinase C expression during keratinocyte differentiation. The cell lines used exhibit a decreasing capacity to differentiate in the order of keratinocytes approximately SVK14 greater than SCC-12F2 greater than SCC-15 greater than SCC-4; moreover, all cell lines respond to a low external Ca2+ concentration by a decreased capacity to differentiate. Normal keratinocytes exhibited the highest number of phorbol ester receptors as compared to the other cell lines, while each individual cell line exhibited a higher number of phorbol ester receptors during growth under normal Ca2+ conditions as compared to cells grown under low Ca2+ conditions. The apparent dissociation constant (Kd) demonstrated only small variations in the various cell lines. In contrast, the cytoplasmic protein kinase C activity, was found to be higher in cells grown under low Ca2+ conditions than in cells grown under normal Ca2+ conditions, indicating the absence of a causal relationship between cytoplasmic protein kinase C activity and phorbol ester receptor expression. Therefore the properties of protein kinase C have been determined in more detail in normal keratinocytes and SCC-15 cells. These studies revealed differences between protein kinase C properties from the two cell lines grown under normal and low Ca2+ conditions. The differences included the effect of phorbol 12-myristate 13-acetate (PMA) on the redistribution pattern of protein kinase C between the cytoplasmic and particulate fractions as well as the activating effect of diolein in vitro on protein kinase C activity, partly purified from particulate or cytoplasmic fractions. These observations demonstrate that the functional protein kinase C activity of keratinocytes is determined by various endogenous and exogenous activators and that these activators are modulated differently in various cell lines, under various growth conditions (low Ca2+ versus normal Ca2+). 相似文献
17.
We analysed the effects of high glucose in rat1 cells overexpressing insulin receptor. High (25 mM) glucose inhibited insulin-stimulated tyrosine kinase activity completely at insulin concentrations of 1 and 5 ng/ml. Decapeptides modelled on insulin receptor sequences surrounding serines 1035 and 1270 were found to inhibit protein kinase C activity in vitro and after microinjection into cells blocked the inhibition of mitogenesis induced by glucose. Purification of receptor from 3T3L1 adipocytes revealed that only the isoenzymes beta1, betaII and delta were detected. The site of the interaction was mapped to the catalytic domain of betaII. These results demonstrate that the inhibition of insulin receptor tyrosine kinase activity can be ameliorated using insulin receptor peptide sequences and there is constitutive and differential interaction of individual PKC isoenzymes with the insulin receptor, and in the case of betaII, this interaction maps to the catalytic domain rather than the regulatory domain. 相似文献
18.
19.
Phorbol esters and calcium-mobilizing hormones increase membrane-associated protein kinase C activity in rat hepatocytes 总被引:2,自引:0,他引:2
Vasopressin, angiotensin II, epinephrine (alpha 1-adrenergic action) and phorbol 12-myristate 13-acetate (PMA) induce increases in membrane-associated protein kinase C activity concomitant with decreases in the cytosolic activity. The data indicate that the calcium-mobilizing hormones and the active phorbol ester induce translocation from the cytosol to the plasma membrane of this protein kinase. The protein kinase C inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, blocked the translocation to the membrane of this protein kinase induced by PMA and vasopressin. 相似文献
20.
Melanie S. Johnson James Simpson David J. MacEwan Angela Ison Roger A. Clegg Kevin Connor Rory Mitchell 《Molecular and cellular biochemistry》1995,146(2):127-137
The characteristics of PKC activation induced by a number of compounds were investigated using PKCs, partially-purified from sources with a naturally high abundance of certain Ca2+ dependent PKC isoforms. Native isoforms were used rather than PKC isoforms expressed from a baculovirus system to assess the effect of tissue specific factors on activity. However, some data using recombinant PKC were included for comparison.The presence of specific PKC isoforms in different tissues was determined using Western blot analysis. Protein kinase C , 1, , , and / were all present in rat midbrain cytosolic extract, PKC , 1, , and / were present in spleen cytosol, and PKC and / were present in COS 7 cell cytosol. The predominance of and activities in COS 7 and spleen extracts respectively was confirmed by enzymic assay.The PKC activity assay was configured such that the Ca2+ dependence of the PKC activity induced by different PKC activators could be determined. Phorbol 12,13-dibutyrate (PDBu) was virtually equipotent on the Ca2+-dependent PKC activity from midbrain and spleen and slightly less potent on that from COS 7 cells. In the absence of Ca2+, PDBu was considerably less potent overall (as, indeed, were the other PKC activators) and was less potent on COS 7 cell PKC than on those from midbrain or spleen. Mezerein was more potent than PDBu at inducing PKC activity in COS 7 cell extracts in either the absence or presence of Ca2+ whereas in the presence of Ca2+, mezerein was slightly less potent on midbrain and spleen than PDBu and equipotent in the absence of Ca2+. Maximum values for Ca2+-independent activation by mezerein indicated that this activator was particularly effective in recruiting Ca2+-dependent PKC isoform activity in a Ca2+ free environment. The greater potency of mezerein on PKC was confirmed using PKC and further purified from rat spleen by hydroxylapatite (HAP) chromatography. The effects of both PDBu and mezerein were investigated using anterior pituitary tissue where a particularly high potency of mezerein in the absence of Ca2+ was noted. The diacylglycerol, 1,2-dioctanoyl-sn-glycerol (DOG), appeared to cause little or no activation of native Ca2+-dependent isoforms in Ca2+ free conditions unlike another longer chain diacylglycerol, 1,2-dioleoyl-sn-glycerol. Also DOG activated midbrain PKCs more potently than PKCs from spleen or COS 7 cells (or lung and pituitary tissue) in the presence of Ca2+. The concentration-dependence of DOG was examined on PKC and PKC further purified from brain by HAP chromatography, revealing that DOG was equally potent on both of these isoforms derived from brain and on recombinant PKC . However, [3H]PDBu binding data using PKC purified from several sources gave very different IC50 values when DOG was used as a displacer, and in general these values correlated with the EC50 values recorded from the activity assay.The data presented here indicate that there are distinct differences in the activator pharmacology of different native PKC isoforms and between the same isoform expressed in different tissues, either because of post-translational modifications or some other tissue specific factor. 相似文献