首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saiki C  Miura A  Furuya H  Matsumoto S 《Life sciences》2007,80(13):1206-1212
This study was designed to examine how systemic administration of an N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, altered respiratory timing in unanesthetized rats under normoxia and hypoxia. To detect fine changes in inspiratory time (TI) and expiratory time (TE), and cycle duration (TTOT), we prepared a diaphragmatic electromyogram (EMGdia). Diaphragm electrodes and arterial and venous catheters were inserted into Wistar rats (n = 8) under pentobarbital anesthesia. The next day, EMGdia was recorded before and after intravenous administration of MK-801 (3 mg/kg) under normoxia and hypoxia (12% O2) without anesthesia, and the respiratory timing (TI, TE, TTOT), respiratory frequency (fR), and amplitude of the integrated EMGdia were measured. Arterial blood gases (ABGs), mean arterial pressure (MAP), and heart rate (fH) were also measured with the EMGdia. Under normoxia, MK-801 increased fR owing to a significant decrease in TE, and elevated both MAP and fH. Under hypoxia, MK-801 suppressed an increase in fR owing to a significant increase in TI, and did not accelerate fH. In both gaseous conditions, on ABGs, MK-801 did not alter partial pressure of O2 (PaO2) or CO2 (PaCO2), and slightly decreased pH (but not less than 7.4). MK-801 significantly decreased hypoxic response (%change from normoxia) in fR, and increased that in EMGdia amplitude, and did not alter a total ventilatory index (fRxEMGdia amplitude). The results suggest that an NMDA receptor-mediated mechanism partially determines fR through significant alterations in respiratory timing, particularly in which the hypoxic ventilatory response was obtained in unanesthetized rats.  相似文献   

2.
A method is presented for real-time monitoring of airway gas concentration waveforms in rats and other small animals. Gas is drawn from the tracheal tube, analyzed by a mass spectrometer, and presented as concentration vs. time waveforms simultaneously for CO2, halothane, and other respiratory gases and anesthetics. By use of a respiratory simulation device, the accuracy of mass spectrometric end-tidal CO2 analysis was compared with both the actual gas composition and infrared spectrophotometry. The effects of various ventilator rates and inspiration-to-expiration ratios on sampling accuracy were also examined. The technique was validated in male Sprague-Dawley rats being ventilated mechanically. The difference between the arterial PCO2 (PaCO2) and the end-tidal PCO2 (PETCO2) was not significantly different from zero, and the correlation between PETCO2 and PaCO2 was strong (r = 0.97, P less than 0.0001). Continuous gas sampling for periods up to 5 min did not affect PaCO2, PETCO2, or airway pressures. By use of this new method for measuring end-tidal halothane concentrations in rats approximately 6.5 mo of age, the minimum alveolar concentration of halothane that prevented reflex movement in response to tail clamping was 0.97 +/- 0.04% atmospheric (n = 14). This mass spectrometric technique can be used in small laboratory animals, such as rats, weighing as little as 250 g. Gas monitoring did not distort either PETCO2 or PaCO2. Under the defined conditions of this study, accurate and simultaneous measurements of phasic respiratory concentrations of anesthetic and respiratory gases can be achieved.  相似文献   

3.
The role of dopamine in the dysregulation of TSH secretion in uremic male rats was investigated using the dopamine antagonist, pimozide. In order to obviate the effect of weight loss due to uremia-induced anorexia as a cause of altered TSH secretion in uremia, we also studied a group of normal animals whose food intake was restricted and who demonstrated weight loss comparable to that of the uremic animals. Baseline TSH concentrations were not significantly different in the normal, uremic or starved animals. Pimozide administration produced no change in the baseline TSH concentrations in any of the groups of rats. The peak TSH response to TRH (5 micrograms IV) was significantly blunted in the uremic animals compared to the normal controls and the starved animals. Pimozide administration did not alter the peak TRH-stimulated TSH response in either the normal animals or the starved animals. However, the peak TRH-stimulated TSH response was significantly increased in the uremic animals and was comparable to the peak TSH response seen in the pimozide-untreated control animals. The data suggest that experimental renal failure in rats is associated with diminished sensitivity of the thyrotroph to TRH stimulation, and that this blunted sensitivity may be dopamine-dependent since it can be abolished by pharmacologic dopamine blockade.  相似文献   

4.
P D Butler  R J Bodnar 《Peptides》1984,5(3):635-639
Thyrotropin releasing hormone (TRH) interacts with both opioid and non-opioid systems in mediating hypothermic, hypoactive, cataleptic, respiratory and analgesic effects. While TRH neither antagonizes opioid analgesia nor alters pain thresholds itself, it blocks neurotensin analgesia. Different forms of pain-inhibition in rats can be activated by selectively altering the parameters of shock: while analgesia induced by 20 inescapable tail-shocks is not reversed by naltrexone, exposure to 60 or 80 shocks does elicit naltrexone-reversible analgesia. The first experiment examined whether intracerebroventricular administration of TRH (0, 10, or 50 micrograms) would alter the elevations in tail-flick latencies in rats induced by 20 or 80 foot shocks and found that TRH significantly lengthened the duration and magnitude of analgesia induced by 20 and 80 foot shocks in a dose-dependent manner. The second experiment extended these findings to the writhing test, a visceral pain test. While the number and duration of writhes of vehicle-treated rats exposed to 80 foot shocks failed to differ from baseline values. TRH (50 micrograms)-treated rats exposed to 80 foot shocks displayed significant decreases in the number and duration of writhes. The third experiment indicated that the differential effects of naltrexone upon analgesia induced by 20 or 80 tail shocks were not apparent when foot shocks were employed, precluding a definitive statement that TRH may be involved in the modulation of both opioid and non-opioid forms of analgesia.  相似文献   

5.
We determined the effects of denervating the hilar branches (HND) of the vagus nerves on breathing and arterial PCO2 (PaCO2) in awake ponies during eupnea and when inspired PCO2 (PICO2) was increased to 14, 28, and 42 Torr. In five carotid chemoreceptor-intact ponies, breathing frequency (f) was less, whereas tidal volume (VT), inspiratory time (TI), and ratio of TI to total cycle time (TT) were greater 2-4 wk after HND than before HND. HND per se did not significantly affect PaCO2 at any level of PICO2, and the minute ventilation (VE)-PaCO2 response curve was not significantly altered by HND. Finally, the attenuation of a thermal tachypnea by elevated PICO2 was not altered by HND. Accordingly, in carotid chemoreceptor-intact ponies, the only HND effect on breathing was the change in pattern classically observed with attenuated lung volume feedback. There was no evidence suggestive of a PCO2-H+ sensory mechanism influencing VE, f, VT, or PaCO2. In ponies that had the carotid chemoreceptors denervated (CBD) 3 yr earlier, HND also decreased f, increased VT, TI, and TT, but did not alter the slope of the VE-PaCO2 response curve. However, at all levels of elevated PICO2, the arterial hypercapnia that had persistently been attenuated, since CBD was restored to normal by HND. The data suggest that during CO2 inhalation in CBD ponies a hilar-innervated mechanism influences PaCO2 by reducing physiological dead space to increase alveolar ventilation.  相似文献   

6.
It is commonly believed that during hyperbaric oxygen (HBO) treatment, in spite of the vasoconstriction induced by the increased O2 content in the breathing gas, the elevated carrying capacity of O2 in the arterial blood results in augmented O2 delivery to tissues. The experiments described here tested the hypothesis that HBO treatment would be more efficient in delivering O2 to poorly perfused tissues if the vasoconstriction induced by elevated O2 could be abolished or attenuated by adding CO2 to the breathing gas. Organ blood flow (QOBF), systemic hemodynamics, and arterial blood gases were measured before, during and after exposure to either 300 kPa O2 (group 1) or 300 kPa O2 with 2 kPa CO2 (group 2), in awake, instrumented rats. During the HBO exposure the respiratory frequency (fb) fell (4 breaths x min(-1) x 100 kPa O2(-1)), with no changes in arterial CO2 tension (PaCO2), but when CO2 was added, fb and PaCO2 increased. The left ventricular pressure (LVP) and the systolic arterial pressure (SBP) increased. The maximum velocity of LVP (+dP/dt) rose linearly with LVP whether CO2 was added or not (r2 = 0.72 and 0.75 respectively). Similarly, the cardiac output (Qc) and heart rate (fc) fell, while the stroke volume (SV) was unaltered, independent of PaCO2. There was a general vasoconstriction in most organs in both groups, with the exception of the central nervous system (CNS), eyes, and respiratory muscles. HBO reduced the blood flow to the CNS by 30%, but this vasoconstriction was diminished or eliminated when CO2 was added. In group 2, the blood flow to the CNS rose linearly with increased PaCO2 and decreased pH. After decompression fc and SBP stayed high, while Qc returned to control values by reducing the SV; CNS blood flow remained markedly elevated in group 2, while in group 1, it returned to control levels. We conclude that the changes in fc, Qc, LVP, dP/dt, SBP and most QOBF values induced by HBO were not changed by hypercapnia. Blood flow to the CNS decreased during HBO treatment at a constant PaCO2. Hypercapnia prevented this decline. Elevated PaCO2 augmented O2 delivery to the CNS and eyes, but increased the susceptibility to O2 poisoning. A prolonged suppression of O2 supply to the CNS occurred during the HBO exposure and in air following the decompression in the absence of CO2. This suppression was offset by the addition of CO2 to the breathing gas.  相似文献   

7.
The localization of thyrotropin releasing hormone (TRH) in rat brain determined by use of avidin-biotin immunoperoxidase histochemistry was compared with the distribution and quantitation by radioimmunoassay (RIA). Male Sprague-Dawley rats received intracisternal injections of 100 micrograms of colchicine or saline and were sacrificed 24 hours later. Brains were either perfused with lysine-periodate fixative and processed for TRH immunohistochemistry or were dissected into 9 brain regions for TRH RIA. In colchicine pretreated rats. TRH immunoreactive perikarya were observed only in nuclei of the hypothalamus and brain stem. No cell body staining was observable in non-colchicine treated rats. With the exception of the olfactory bulb, brain regions exhibiting dense TRH staining contained high concentrations of TRH as measured by RIA. Colchicine pretreatment did not alter the concentration of TRH in most brain regions, however, there was a significant increase in brain stem TRH content 24 hours following colchicine administration. These findings indicate that immunohistochemical localization of TRH corresponds well with endogenous concentrations of TRH determined by RIA.  相似文献   

8.
M Mori  J F Wilber  T Nakamoto 《Life sciences》1984,35(25):2553-2560
We studied whether protein-energy malnutrition changed brain susceptibility to a small dose of caffeine in newborn rats. Since we had demonstrated previously that caffeine intake during lactation increased the brain neuropeptide on newborns, we investigated further the effects of the prenatal administration of caffeine on TRH and cyclo (His-Pro). From day 13 of gestation to delivery day, pregnant rats in one group were fed either a 20% or a 6% protein diet ad libitum, and those in the other group were pair-fed with each protein diet supplemented with caffeine at an effective dose of 2 mg/100 g body weight. Upon delivery, brain weight, brain protein, RNA, DNA and the neuropeptides thyrotropin-releasing hormone (TRH) and cyclo (His-Pro) were measured in the newborn rats. A 6% protein without caffeine diet caused reductions in brain weights and brain protein, RNA and DNA contents, but did not alter brain TRH and cyclo (His-Pro) concentrations in the newborn animals. In the offspring from dams fed a 6% protein diet, caffeine administration significantly elevated brain weights and brain contents of protein, RNA and DNA. In contrast, these values were similar between noncaffeine and caffeine-supplemented animals in a 20% protein diet group. Brain TRH and cyclo (His-Pro) concentrations were not changed by caffeine administration. These data suggest that caffeine augments protein synthesis in the newborn rat brain when malnourished, but that the same dose of caffeine did not affect protein synthesis in brains of newborn rats from normally nourished dams. Therefore, the present findings indicate that the nutritional status of mothers during pregnancy has important implication in the impact of caffeine on their offspring's brains.  相似文献   

9.
Mature female Sprague-Dawley (SD) and Long-Evans (LE) rats were ovariectomized (OVX), fitted with indwelling atrial catheters and given a single sc injection of either 25 or 100 μg polyestradiol phosphate (PEP); seven days later blood samples were withdrawn at two hour intervals from 1100 to 2100 hours to detect the presence of an afternoon surge of prolactin (PRL). Other groups of OVX rats of both strains also treated with PEP and catheterized as above were sampled before and at 2, 5, 10 and 30 min after iv administration of 1 μg synthetic thyrotropin releasing hormone (TRH). Pituitary (AP) and uterine weights were determined following sacrifice one day after TRH treatment. Separate groups of OVX rats of both strains treated with 100 μg PEP were decapitated 7 days later and each AP was removed and homogenized. The AP homogenates and plasma samples were assayed for PRL by radioimmunoassay. Rats of both strains had afternoon PRL surges and in both strains the magnitude and/or duration of the surges were enhanced by the higher dose of PEP. However, within each PEP dose LE rats released significantly more PRL during the surge than did SD rats. Rats of both strains also released PRL in response to TRH and this response was enhanced in both strains by the higher of the two doses of PEP. However, there were no differences between the strains at 25 μg PEP and at 100 μg PEP SD rats released significantly more PRL to TRH than did LE rats. Pituitary weight and PRL concentration were not different between the strains at either dose of PEP but LE rats had significantly heavier uteri at both doses of PEP compared to SD rats. These data not only show that strain differences exist in estrogen-induced or mediated PRL release in the rat but also indicate that the differences are not uniform. This latter observation suggests that the estrogen-induced mechanisms examined in this study are for the most part independent of each other.  相似文献   

10.
In previous studies it has been observed that acute administration or short-term treatment with calcium channel blockers can influence the secretion of some pituitary hormones. In this study, we have examined the effect of the long-term administration of diltiazem on luteinizing-hormone (LH), follicle-stimulating hormone (FSH), thyrotropin (TSH) and prolactin (PRL) levels under basal conditions and after gonadotropin-releasing hormone (GnRH)/thyrotropin-releasing-hormone (TRH) stimulation in 12 subjects affected by cardiovascular diseases who were treated with diltiazem (60 mg 3 times/day per os) for more than 6 months and in 12 healthy volunteers of the same age. The basal levels of the studied hormones were similar in the two groups. In both the treated patients and the control subjects, a statistically significant increase (p < 0.01) in LH, FSH, TSH and PRL levels was observed after GnRH/TRH administration. Comparing the respective areas under the LH, FSH, TSH and PRL response curves between the two groups did not present any statistically significant difference. These findings indicate that long-term therapy with diltiazem does not alter pituitary hormone secretion.  相似文献   

11.
Ventilatory kinetics during exercise (30 W for 6 min) were studied in 3 asthmatics, 14 patients with chronic airway obstruction (11 with bronchial or type B disease, 3 with emphysematous or type A disease), and in 5 normal age-matched controls. The measure of ventilatory increase during early exercise, alpha 1-3%, was calculated as (avg minute ventilation over 1st-3rd min of exercise--resting minute ventilation)/(avg minute ventilation over 4th-6th min of exercise--resting minute ventilation) X 100. Arterial pH, PO2, and PCO2 (PaCO2) were measured in vitro at rest and within 20 s of termination of exercise. Respiratory PaCO2 oscillations had previously been monitored at rest in the patients (indirectly as in vivo arterial pH, using a fast-response pH electrode) and quantified by upslope (delta PaCO2/delta t). alpha 1-3% was normal in asthmatics (whose respiratory oscillations as a group showed least attenuation) and in type A patients (whose respiratory oscillations as a group were most attenuated). In type B patients reduction in alpha 1-3% correlated with attenuation of delta PaCO2/delta t (r = 0.75; P less than 0.01). There was no significant correlation between delta PaCO2/delta t and change of in vitro PaCO2 from rest to the immediate postexercise period. These findings are consistent with the hypothesis that attenuation of delta PaCO2/delta t slows ventilatory kinetics during exercise in type B but not type A patients. Intact respiratory oscillations are not necessary for CO2 homeostasis after the first few minutes of exercise.  相似文献   

12.
Inspiratory muscle activity increases when lung volume is increased by continuous positive-pressure breathing in conscious human subjects (Green et al., Respir. Physiol. 35: 283-300, 1978). Because end-tidal CO2 pressure (PETCO2) does not change, these increases have not been attributed to chemoreflexes. However, continuous positive-pressure breathing at 20 cmH2O influences the end-tidal to arterial CO2 pressure differences (Folkow and Pappenheimer, J. Appl. Physiol. 8: 102-110, 1955). We have compared PETCO2 with arterial CO2 pressure (PaCO2). We have compared PETCO2 with arterial CO2 pressure (PaCO2) in healthy human subjects exposed to continuous positive airway pressure (10 cmH2O) or continuous negative pressure around the torso (-15 cmH2O) sufficient to increase mean lung volume by about 650 ml. The difference between PETCO2 and PaCO2 was not decreased, and we conclude that PETCO2 is a valid measure of chemical drive to ventilation in such circumstances. We observed substantial increases in respiratory muscle electromyograms during pressure breathing as seen previously and conclude this response must originate by proprioception. On average, the compensation of tidal volume thus afforded was complete, but the wide variability of individual responses suggests that there was a large cerebral cortical component in the responses seen here.  相似文献   

13.
Prolactin (PRL) release was studied in mid-lactational female rats by comparing the stimulatory influence of suckling to a drug protocol that mimics the effect of suckling on the anterior pituitary (AP). Animals that nursed pups for 15 minutes and were allowed to suckle again 60 minutes later for 10 minutes, released PRL effectively during both nursing episodes; however, in animals that received the dopamine (DA) agonist 2-Br-alpha-ergocryptine maleate (CB-154, 0.5 mg/rat i.v.) at the end of the first nursing period did not show an increase in plasma PRL to a second suckling stimulation by the pups. When thyrotropin releasing hormone (TRH) was substituted for the second suckling period in CB-154 treated rats, a slight increase in plasma PRL occurred 5 minutes after the injection. In a third study we transiently blocked the action of DA at the AP by injecting the DA antagonist domperidone (0.01 mg/rat i.v.), followed 5 minutes later by the administration of CB-154. One hour later animals were either allowed to suckle pups for 10 minutes or were injected with TRH. Treatment with TRH resulted in an 11 fold increase in plasma PRL but suckling was completely ineffective in inducing PRL release. These data suggest that the lack of PRL release to suckling in CB-154 treated rats was due to inhibitory effects of CB-154 on neural mechanisms which link nursing to PRL release. In addition, the data show that pharmacologic DA antagonism affects TRH releasable PRL more than does suckling. This may be due to a reduction, by suckling, of the pool of PRL that is available to be released by TRH administration.  相似文献   

14.
Steady-state ventilatory responses to CO2 in trained awake baboons were studied to determine the response to a venous CO2 load. CO2 was loaded either directly into the venous blood through an arteriovenous shunt or by addition to the inhaled air. The two modes of loading were adjusted to produce the same increase in minute volume. Minute volume, tidal volume respiratory frequency, end-tidal PCO2, PaCO2, and pHa were measured. PaCO2 and PETCO2 increased the same amount during the two modes of CO2 loading; thus, the response to changes in arterial PCO2, deltaVE/deltaPaCO2, was the same. I conclude that the ventilatory response to venous CO2 loading occurs only through the change in mean arterial PCO2 and thus it is unlikely that there are any important venous CO2 receptors.  相似文献   

15.
The respiratory effect of progestin differs among various animal species and humans. The rat does not hyperventilate in response to exogenous progestin. The present study was conducted to determine whether administration of combined progestin and estrogen prompts ventilatory stimulation in the male rat. Ventilation, blood gases, and metabolic rates (O2 consumption and CO2 production) were measured in the awake and unrestrained male Wistar rat. The combined administration of a synthetic potent progestin (TZP4238) and estradiol for 5 days significantly increased tidal volume and minute expiratory ventilation (VE), reduced arterial PCO2, and enhanced the ventilatory response to CO2 inhalation (delta VE/delta PCO2). On the other hand, respiratory frequency, O2 consumption, CO2 production, and body temperature were not affected. The arterial pH increased slightly, with a concomitant decrease in plasma [HCO3-]. Administration of either TZP4238 or estradiol alone or vehicle (Tween 80) had no effect on respiration, blood gases, and ventilatory response to CO2. The results indicated that respiratory stimulation following combined progestin plus estradiol treatment in the male rat involves activation of process(es) that regulate tidal volume and its augmentation during CO2 stimulus.  相似文献   

16.
Intracisternal injection of thyrotropin-releasing hormone (TRH)-Gly (pGlu-His-Pro-Gly) produced a dose-dependent (1-100 micrograms) stimulation of gastric acid secretion in urethane-anesthetized rats implanted acutely with a gastric fistula. The peak response occurred 20-30 min after intracisternal injection and lasted for more than 2 h. Intravenous injection of TRH-Gly (100 micrograms) did not modify gastric acid secretion. Following intracisternal injection of TRH-Gly, a peak elevation of both TRH-Gly and TRH levels is observed in the cerebrospinal fluid (CSF) within 15 min. Thereafter, TRH values are returned to basal levels at 75 min after the injection, whereas TRH-Gly concentrations remain significantly elevated throughout the 2-h period of measurement. Compartmental analysis revealed that CSF conversion of TRH-Gly to TRH was only 0.0072%/min. Medullary coronal sections containing the dorsal vagal complex and the raphé nucleus revealed increased content of TRH-Gly, but not TRH, 40 min after administration of TRH-Gly at an intracisternal dose effective in stimulating gastric acid secretion (100 micrograms). In addition, TRH but not TRH-Gly (10(-7)-10(-5) M) displaced [3H]MeTRH binding from rat medullary blocks containing the dorsal vagal complex. These data suggest that the intracisternal TRH-Gly-induced stimulation of gastric acid secretion is not related to its conversion to TRH in the CSF, or direct activation of TRH receptors in the medulla. The acid secretory response of TRH-Gly may be due to the formation of TRH at the active brain sites, or alternatively to activation of its own specific receptors.  相似文献   

17.
The sympathoadrenal activity was studied during baroreflex stimulation in chloralose anesthetized rats. Circulating norepinephrine (NE) and epinephrine (E) levels were used as indices of sympathetic fiber and adrenal medulla activities, respectively, under basal conditions and during a 1-min bilateral carotid occlusion (CO). In vagotomized rats, the CO induced a significant increase in mean arterial pressure (MAP) associated with an increase in circulating E levels, while this procedure did not alter blood pressure or circulating NE or E levels in intact animals. Following vagotomy, the baroreflex stimulation activated specifically the adrenal medulla, without alteration of the sympathetic fiber activity since the NE levels were not modified by the occlusion. Moreover, in support of that hypothesis, chemical sympathectomy did not decrease the pressure response to CO while bilateral adrenalectomy almost completely abolished this response. The elevation of circulating E induced by the CO was greatly potentiated by pretreatment with Yohimbine, a selective alpha 2-antagonist, and was completely abolished by administration of Clonidine, an alpha 2-agonist, while phenoxybenzamine, which is mainly an alpha 1-antagonist, did not potentiate significantly the E response to CO. These results therefore suggest that the baroreflex activation of the adrenal medulla induced by CO may be modulated in vivo via alpha 2-adrenergic receptors that could be localized on chromaffin cells.  相似文献   

18.
In a water-limited system, the following hypotheses are proposed: warming will increase seedling mortality; elevated atmospheric CO2 will reduce seedling mortality by reducing transpiration, thereby increasing soil water availability; and longevity (i.e. whether a species is annual or perennial) will affect the response of a species to global changes. Here, these three hypotheses are tested by assessing the impact of elevated CO2 (550 micromol mol(-1) and warming (+2 degrees C) on seedling emergence, survivorship and establishment in an Australian temperate grassland from autumn 2004 to autumn 2007. Warming impacts on seedling survivorship were dependent upon species longevity. Warming reduced seedling survivorship of perennials through its effects on soil water potential but the seedling survivorship of annuals was reduced to a greater extent than could be accounted for by treatment effects on soil water potential. Elevated CO2 did not significantly affect seedling survivorship in annuals or perennials. These results show that warming will alter recruitment of perennial species by changing soil water potential but will reduce recruitment of annual species independent of any effects on soil moisture. The results also show that exposure to elevated CO2 does not make seedlings more resistant to dry soils.  相似文献   

19.
We determined the effects of carotid body excision (CBX) on eupneic ventilation and the ventilatory responses to acute hypoxia, hyperoxia, and chronic hypoxia in unanesthetized rats. Arterial PCO2 (PaCO2) and calculated minute alveolar ventilation to minute metabolic CO2 production (VA/VCO2) ratio were used to determine the ventilatory responses. The effects of CBX and sham operation were compared with intact controls (PaCO2 = 40.0 +/- 0.1 Torr, mean +/- 95% confidence limits, and VA/VCO2 = 21.6 +/- 0.1). CBX rats showed 1) chronic hypoventilation with respiratory acidosis, which was maintained for at least 75 days after surgery (PaCO2 = 48.4 +/- 1.1 Torr and VA/VCO2 = 17.9 +/- 0.4), 2) hyperventilation in response to acute hyperoxia vs. hypoventilation in intact rats, 3) an attenuated increase in VA/VCO2 in acute hypoxemia (arterial PO2 approximately equal to 49 Torr), which was 31% of the 8.7 +/- 0.3 increase in VA/VCO2 observed in control rats, 4) no ventilatory acclimatization between 1 and 24 h hypoxia, whereas intact rats had a further 7.5 +/- 1.5 increase in VA/VCO2, 5) a decreased PaCO2 upon acute restoration of normoxia after 24 h hypoxia in contrast to an increased PaCO2 in controls. We conclude that in rats carotid body chemoreceptors are essential to maintain normal eupneic ventilation and to the process of ventilatory acclimatization to chronic hypoxia.  相似文献   

20.
The role of gastrin, acetylcholine and histamine in the acid response to central vagal activation induced by intracisternal injection of the stable analog, RX 77368, was further investigated in urethane-anesthetized rats with gastric fistula. The gastrin monoclonal antibody 28-2 injected intravenously, at a dose previously shown to prevent gastrin-induced stimulation of acid secretion, did not alter the peak acid response to intracisternal injection of RX 77368 (15 ng). The TRH analog (30 ng) injected into the cisterna magna increased levels of histamine measured in the hepatic portal blood. Cimetidine administered at a dose which completely blocked the stimulation of gastric acid secretion produced by intravenous infusion of histamine, inhibited by 62% the stimulatory effect of intracisternal RX 77368 (30 ng). The M1 muscarinic antagonist, pirenzepine, completely prevented the acid secretion induced by intracisternal RX 77368 (30 ng). These results indicate that the acid response to central vagal activation by the TRH analog in rats involved M1 muscarinic receptors along with histamine release acting on H2 histaminergic receptors whereas gastrin does not appear to play an important role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号