首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Human bone marrow (BM) B cells capable of spontaneous and high rate Ig secretion for 14 days in vitro have been described previously. We have shown recently that Ig secretion by these BM cells depends on stromal adherent BM cell-derived factors identified as IL-6 and fibronectin. Our report shows that the endogenous generation of IL-1 beta and TNF-alpha in serum-containing cultures of BM mononuclear cells (BMMC) is also involved in the control of Ig-secreting cells, because their blockade with specific antibodies markedly reduced Ig production. Further experiments revealed that IL-1 beta and TNF-alpha acted by regulating IL-6 production, as can be deduced from the following findings: 1) the inhibition of Ig secretion caused by either anti-IL-1 beta or anti-TNF-alpha antibodies could be reversed by exogenous IL-6; 2) the addition of either of these antibodies inhibited endogenous IL-6 production in BMMC cultures; 3) IL-1 beta plus TNF-alpha, but neither one alone, restored complete IL-6 and Ig production by BMMC in serum-free cultures. Moreover, adherent, but not nonadherent, BM cells were responsible for endogenous IL-1 beta and TNF-alpha secretion. Finally, IL-1 beta plus TNF-alpha induced the production of IL-6, but not of Ig, by adherent BM cells. Neither IL-6 nor Ig production was induced by adding this cytokine combination to nonadherent BM cell cultures, despite the fact that this fraction contained all the Ig-secreting cells. However, the addition of IL-6 restored Ig secretion in this cell fraction. These results suggest that IL-1 beta and TNF-alpha produced by adherent BM cells synergistically induce early IL-6 generation, which, in turn, drives BM B cell producers into the high rate Ig-secreting state.  相似文献   

3.
The aim of this study was to characterize the mediators released by mast cells responsible for IL-8-induced neutrophil migration. It was observed that IL-8 induces a dose-dependent neutrophil migration into peritoneal cavity of rats, but not into air-pouch cavity in which resident mast cells are not present. The transference of peritoneal mast cells to the air-pouch renders this cavity responsive to IL-8. The neutrophil migration induced by IL-8 into the peritoneal cavity was not observed when the peritoneal-resident mast cells were depleted by compound 48/80 or distilled water treatment. Confirming the importance of mast cells, IL-8-stimulated mast cells supernatant induced significant neutrophil migration when injected into peritoneal and air-pouch cavities. The IL-8-induced neutrophil migration was observed not to be dependent on LTB(4), prostaglandins or TNF-alpha, since MK886, indomethacin or thalidomide were unable to block the IL-8-induced neutrophil accumulation 'in vivo' or the release of neutrophil chemotactic factor "in vitro" by IL-8-stimulated mast cells. However, dexamethasone, an inhibitor of the synthesis of pro-inflammatory cytokines, blocked the neutrophil migration induced by IL-8 "in vivo" and also inhibited the release of the neutrophil chemotactic factor by IL-8-stimulated mast cells. Moreover, the incubation of IL-8-stimulated mast cells supernatant with antibody against cytokine-induced neutrophil chemoattractant 1 (CINC-1), but not against TNF-alpha or IL-1beta, inhibited its neutrophil chemotactic activity. Furthermore, we found a significant amount of CINC-1 in this supernatant. In conclusion, we demonstrated that the neutrophil migration induced by IL-8 is dependent on CINC-1 release from mast cells.  相似文献   

4.
Spironolactone (SPIR) has been described to suppress accumulation of pro-inflammatory cytokines. Here, the suppression of TNF-alpha in lipopolysaccharide (LPS)-stimulated mononuclear cell cultures was confirmed. However, SPIR was also found to induce apoptosis, prompting the investigations of a possible association between the two effects: The apoptosis-inducing and the cytokine-suppressive effects of SPIR correlated with regard to the effective concentration range. Also, pre-incubation experiments demonstrated a temporal separation of the two effects of ≤4 h, with TNF-alpha suppression preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta was non-detectable in cultures treated with SPIR prior to LPS, whereas elevated IL-1beta levels were seen when SPIR was added after LPS-stimulation. It is possible that the extracellular accumulation of IL-1beta is due to an increased release of already produced IL-1beta as a result of cell death. In conclusion, suppression of cytokine production by SPIR may be associated with its apoptotic potential, either directly (apoptosis is a consequence of suppressed cytokine production, or vice-versa) or indirectly (suppressed cytokine production and apoptosis are parallel but otherwise unrelated phenomena.)  相似文献   

5.
The influence of IL-3 on the bone marrow cells of 53 patients with acute myeloid leukaemia (AML) was investigated after 72 h suspension in cultures by analysing the proliferation of blasts and the secretion of cytokines. The titres of IL-1beta IL-6, TNF-alpha and IL-3 were measured in the supernatants of these cultures with ELISA tests. Comparing the percentage of cells in S-phases of control cultures and cultures with IL-3, the leukaemias were divided into two growth pattern groups: IL-3-insensitive (n=19) and IL-3-sensitive (n=34) leukaemias. The IL-3-insensitive AML cells show a greater ability for autonomous growth, first by the increase of S-phase in the control culture compared with the S-phase in vivo (P=0.0486) and second, by the higher constitutive secretion (control culture) of IL-1beta P =0.0004), IL-6 ( P =0.0395) and TNF-alpha P=0.0005). The IL-3-induced secondary cytokine secretion is also different in the two growth pattern groups. Whereas in the IL-3-insensitive AML cells a moderate increase of IL-1beta (1.48-fold increase) was present, in the IL-3-sensitive AML cells a 4.72-fold increase of IL-1beta 2.71-fold increase of IL-6 and 11.81-fold increase of the TNF-alpha titre could be detected. Overall, the data show an inverse correlation between the ability of AML cells to respond to IL-3 with increase of an S-phase and the constitutive secretion of IL-1beta, II-6 and TNF-alpha. A further effect of IL-3 is the induction of secondary cytokine secretion in the bone marrow of IL-3-sensitive growing AML cells.  相似文献   

6.
IL-10 inhibits cytokine production by activated macrophages   总被引:127,自引:0,他引:127  
IL-10 inhibits the ability of macrophage but not B cell APC to stimulate cytokine synthesis by Th1 T cell clones. In this study we have examined the direct effects of IL-10 on both macrophage cell lines and normal peritoneal macrophages. LPS (or LPS and IFN-gamma)-induced production of IL-1, IL-6, and TNF-alpha proteins was significantly inhibited by IL-10 in two macrophage cell lines. Furthermore, IL-10 appears to be a more potent inhibitor of monokine synthesis than IL-4 when added at similar concentrations. LPS or LPS- and IFN-gamma-induced expression of IL-1 alpha, IL-6, or TNF-alpha mRNA was also inhibited by IL-10 as shown by semiquantitative polymerase chain reaction or Northern blot analysis. Inhibition of LPS-induced IL-6 secretion by IL-10 was less marked in FACS-purified peritoneal macrophages than in the macrophage cell lines. However, IL-6 production by peritoneal macrophages was enhanced by addition of anti-IL-10 antibodies, implying the presence in these cultures of endogenous IL-10, which results in an intrinsic reduction of monokine synthesis after LPS activation. Consistent with this proposal, LPS-stimulated peritoneal macrophages were shown to directly produce IL-10 detectable by ELISA. Furthermore, IFN-gamma was found to enhance IL-6 production by LPS-stimulated peritoneal macrophages, and this could be explained by its suppression of IL-10 production by this same population of cells. In addition to its effects on monokine synthesis, IL-10 also induces a significant change in morphology in IFN-gamma-stimulated peritoneal macrophages. The potent action of IL-10 on the macrophage, particularly at the level of monokine production, supports an important role for this cytokine not only in the regulation of T cell responses but also in acute inflammatory responses.  相似文献   

7.
Previous studies have implicated a role for heterotrimeric G protein-coupled signaling in B cells, monocytes, and macrophages stimulated with LPS and have shown that G proteins coimmunoprecipitate with membrane-bound CD14. In this study, we have extended these observations in human dermal microvessel endothelial cells (HMEC) that lack membrane-bound CD14 and in murine macrophages to define further the role of heterotrimeric G proteins in TLR signaling. Using the wasp venom-derived peptide, mastoparan, to disrupt G protein-coupled signaling, we identified a G protein-dependent signaling pathway in HMEC stimulated with TLR4 agonists that is necessary for the activation of p38 phosphorylation and kinase activity, NF-kappaB and IL-6 transactivation, and IL-6 secretion. In contrast, HMEC activation by TLR2 agonists, TNF-alpha, or IL-1beta was insensitive to mastoparan. In the murine macrophage cell line, RAW 264.7, and in primary murine macrophages, G protein dysregulation by mastoparan resulted in significant inhibition of LPS-induced signaling leading to both MyD88-dependent and MyD88-independent gene expression, while TLR2-mediated gene expression was not significantly inhibited. In addition to inhibition of TLR4-mediated MAPK phosphorylation in macrophages, mastoparan blunted IL-1R-associated kinase-1 kinase activity induced by LPS, but not by TLR2 agonists, yet failed to affect phosphorylation of Akt by phosphoinositol-3-kinase induced by either TLR2- or TLR4-mediated signaling. These data confirm the importance of heterotrimeric G proteins in TLR4-mediated responses in cells that use either soluble or membrane-associated CD14 and reveal a level of TLR and signaling pathway specificity not previously appreciated.  相似文献   

8.
In inflammatory conditions of the gut, cytokines are released into the mucosa and submucosa propagating and sustaining the inflammatory response. In CaCo-2 cells, we have shown that various inflammatory cytokines interfere with the secretion of lipids, an effect that is likely caused by the release of a ligand to the epidermal growth factor (EGF) receptor. In the present study, the role of the EGF receptor signaling pathway and the effects of the cytokines tumor necrosis factor-alpha (TNF-alpha) and and interleukin 1beta (IL-1beta) on triacylglycerol-rich lipoprotein secretion were investigated. CaCo-2 cells were incubated with oleic acid to enhance triacylglycerol-rich lipoprotein secretion. TNF-alpha and IL-1beta significantly decreased the basolateral secretion of apolipoprotein B (apoB) mass, with IL-1beta being more potent. Tyrphostin, an inhibitor of the EGF receptor intrinsic tryosine kinase, prevented or markedly attenuated the decrease in apoB secretion by TNF-alpha or IL-1beta. Both cytokines increased the phosphorylation of the EGF receptor by 30 min. Moreover, phosphotyrosine immunoblots of the EGF receptor demonstrated an increase in tyrosine residues phosphorylated by 0.5 and 6.5 h. At both these time points, TNF-alpha and IL-1beta also decreased the binding of EGF to its cell surface receptor. At 6.5 h, activation of the EGF receptor was sustained. In contrast, the early activation of the receptor was only transient as receptor phosphorylation and binding of EGF to its receptor returned to basal levels by 2 h. Preventing ligand binding to the EGF receptor by a receptor-blocking antibody attenuated receptor activation observed after 6.5 h. This did not occur at 0.5 h, suggesting that early activation of the EGF receptor was non-ligand-mediated. Similarly, apoB secretion was inhibited by an early non-ligand-mediated process; whereas at the later time, inhibition of apoB secretion was ligand-mediated. Thus, the inflammatory cytokines TNF-alpha and IL-1beta interfere with the secretion of triacylglycerol-rich lipoproteins by both early and delayed signaling events mediated by the EGF receptor signaling pathway.  相似文献   

9.
Lin HC  Wang CH  Yu CT  Hwang KS  Kuo HP 《Life sciences》2001,69(11):1333-1344
To investigate the effect of neutrophil adherence to epithelial cells on the release of interleukin 8 (IL-8), we measured neutrophil adherence in the presence or absence of IFN-gamma+TNF-alpha+IL-1beta (cytomix) stimulation on cultured A549 epithelial cells. The extent of neutrophil adherence to A549 epithelial cells was measured and the concomitant production of IL-8 and nitrite were assayed. The roles of adhesion molecules and nitrite in modulation of neutrophil adherence were examined by pretreatment with oversaturating ICAM-1 blocking antibody and L-NAME (1 mM), respectively. There was a time-dependent spontaneous and cytomix-induced release of IL-8 from epithelial cells, as well as a time-dependent increase in the magnitude of neutrophil adherence to epithelial cells. Stimulation of epithelial cells with cytomix induced a further increase in neutrophil adherence. Pretreatment with oversaturated ICAM-1 monoclonal antibody inhibited neutrophil adherence with or without cytomix stimulation. The inhibition of neutrophil adherence to epithelial cells with ICAM-1 monoclonal antibody or a semipermeable membrane downregulated the release of IL-8 with or without cytomix stimulation. Stimulation with cytomix decreased nitrite production. Both neutrophil adherence and L-NAME pretreatment significantly inhibited the production of nitrite. The inhibition of neutrophil adherence to epithelial cells with ICAM-1 monoclonal antibody or a semipermeable membrane upregulated nitrite production. Pretreatment with L-NAME failed to modify the spontaneous release of IL-8, but significantly enhanced the response to adherence and cytomix. In conclusion, endogenous nitric oxide may play a role in preventing neutrophil adherence to lung epithelial cells, thus modulating concomitant IL-8 release.  相似文献   

10.
In the present study the regulation of CXC chemokine expression was evaluated in full-thickness abdominal wounds in mice. During the first 24 h after injury, IL-1alphabeta, KC, macrophage-inflammatory protein (MIP)-2, and monocyte chemoattractant protein-1 were the predominant cytokines and chemokines produced; TNF-alpha was not detected. Chemokine mRNA expression and protein secretion occurred in two temporal stages. The first, which reached a maximum at 6 h, was associated with high levels of IL-1alpha and KC and low levels of MIP-2. This stage could be reproduced by intradermal injection of IL-1alpha or IL-1beta and was partially blocked by injection of neutralizing Ab against IL-1alpha but not IL-1beta. In animals depleted of circulating neutrophils, chemokine expression was reduced by nearly 70% during this stage. In the second stage, which peaked at 24 h after injury, modest but significant levels of IL-1beta were detected in association with low levels of KC and high levels of MIP-2. This pattern of chemokine expression could not be mimicked by injection of IL-1alpha or IL-1beta (even with prolonged exposure), although MIP-2 expression could be partially inhibited by intradermal injection of neutralizing Ab against IL-1beta. Surprisingly, neutrophil depletion before injury resulted in sustained high levels of both KC and MIP-2 expression. These observations demonstrate that these two closely related chemokines are under distinct regulatory controls in vivo that are likely to reflect the temporally ordered participation of different cell types and/or extracellular stimuli and inhibitors.  相似文献   

11.
Glucose-induced insulin secretion from islets cultured in the presence of interleukin-6 (IL-6) for 12-24 h was inhibited to a similar extent as when islets were treated with interleukin-1 beta (IL-1 beta). However, unlike IL-1 beta, IL-6 did not potentiate insulin secretion during an acute (30 min) exposure of islets to the cytokine, nor did it inhibit DNA synthesis during a 24 h culture period. A 12 h pretreatment of islets with tumour necrosis factor-alpha (TNF-alpha) combined with IL-1 beta potentiated the inhibitory effect of IL-1 beta on secretion, such that 20 mM-glucose-induced insulin secretion was abolished. No synergistic inhibition of secretion was observed with TNF-alpha and IL-6. However, IL-1 beta and IL-6 were found to inhibit insulin secretion in an additive manner. These results suggest that IL-6 inhibits insulin secretion in a manner distinct from that of IL-1 beta, and that IL-6 is unlikely to mediate the inhibitory effects of IL-1 beta or TNF-alpha on rat islets of Langerhans.  相似文献   

12.
13.
Flow cytometry has become a powerful technique to measure intracellular cytokine production in lymphocytes and monocytes. Appropriate inhibition of the secretion of the produced cytokines is required for studying intracellular cytokine expression. The aim of this study was to compare the capacity of cytokine secretion inhibitors, monensin and brefeldin A, in order to trap cytokine production (interleukin-1 beta [IL-1beta], IL-6, tumor necrosis factor-alpha [TNF-alpha]) within peripheral blood monocytes. A two-color flow cytometric technique was used to measure intracellular spontaneous and lipopolysaccharide (LPS)-stimulated IL-1beta, IL-6, and TNF-alpha production in monocytes (CD14+) of whole blood cultures. The viability of monensin-treated monocytes was slightly lower than that of brefeldin A-inhibited monocytes, as measured with propidium iodide (PI). The percentage of IL-6 and TNF-alpha-producing monocytes after 8 h of culture without stimulation revealed significant lower values for monensin-treated than for brefeldin A-treated monocytes. The percentages for stimulated cells did not differ. The spontaneous intracellular production in molecules of equivalent soluble fluorochrome units (MESF) of IL-1beta, IL-6, and TNF-alpha after 8 h of culture was higher in brefeldin A than in monensin-inhibited monocytes. The LPS-stimulated intracellular production of IL-1beta, IL-6, and TNF-alpha was increased in brefeldin A-inhibited monocytes. In conclusion, for flow cytometric determination of intracellular monocytic cytokines (IL-1beta, IL-6, and TNF-alpha), brefeldin A is a more potent, effective, and less toxic inhibitor of cytokine secretion than monensin.  相似文献   

14.
Previous observations have shown that tumour necrosis factor alpha (TNF-alpha) synthesis is increased in the uterus of diabetic rats and that the epithelial layer lining the uterine lumen is the major site of TNF-alpha over-production. In the present study, TNF-alpha secretion was found to be stimulated by high D-glucose levels in primary cultures of mouse uterine luminal cells but not in cultures of the mouse uterine epithelial WEG-1 cell line. Experiments were performed to investigate the possibility that non-epithelial cells may mediate the influence of high D-glucose on TNF-alpha production by uterine epithelial cells. Immunocytochemical analysis revealed the reproducible presence of a small proportion of macrophages in primary cultures. Macrophages of the RAW 264.7 cell line were found to secrete more interleukin (IL)-1beta (but not TNF-alpha) when cultured in high D-glucose. TNF-alpha production in WEG-1 cells was increased upon exposure to IL-1beta and both protein kinase-C and tyrosine kinase pathways appeared to be involved in TNF-alpha stimulation. Addition of IL-1 receptor antagonist to primary cultures partially abrogated the effect of high D-glucose. Since WEG-1 cells do not produce IL-1beta, the data lend support to the hypothesis that uterine epithelial cells synthesize high levels of TNF-alpha in response to hyperglycaemia via an increase in IL-1beta secretion by stromal macrophages.  相似文献   

15.
The hypothesis that cytokines mediate neutrophil emigration induced by endotoxin (LPS) was studied by examining the potency, the kinetics of neutrophil emigration, and the tachyphylaxis of intradermal sites with IL-1, TNF-alpha and LPS. Human rIL-1 alpha and IL-1 beta, synthetic lipid A, and LPS were several orders of magnitude more potent than human rTNF. The kinetic profiles of neutrophil emigration induced by IL-1 alpha, TNF, and LPS were characterized by minimal emigration in the first 30 min, followed by rapid and transient emigration. After the injection of LPS, the onset and the time at which the rate of emigration was maximal consistently appeared 30 min later than IL-alpha or TNF, suggesting that neutrophil emigration in response to LPS was mediated by a locally generated cytokine. IL-1 and TNF were then examined as potential secondary mediators of LPS-induced emigration by comparing the patterns of tachyphylaxis between LPS and IL-1 alpha or TNF; i.e., the magnitude of neutrophil emigration into inflammatory sites was compared with sites injected 6 h previously (desensitizing injections) with a cytokine or with LPS. Tachyphylaxis was dose dependent with each and also between the IL-1 species; therefore, when tachyphylaxis between the cytokines and LPS was examined, relatively higher doses were selected for the desensitizing injections than for the test injections. With this approach, desensitizing injections of IL-1 alpha diminished the neutrophil accumulation after LPS, and LPS also desensitized sites to IL-1 alpha. However, tachyphylaxis was not observed between TNF and LPS, or between TNF and IL-1 alpha. These data suggest that IL-1, but not TNF, is a potential mediator of LPS-induced neutrophil emigration.  相似文献   

16.
17.
We characterized the time course of inflammatory cytokine release at the site of injury and in plasma after surgery on the rat tail. Anesthetized Sprague-Dawley rats had a 20 mm long incision made through the skin and fascia of their tails. Control rats were anesthetized, but no incision was made. Blood and tissue samples were taken 2 h and 1, 2, 4, and 8 days after surgery and analysed by ELISA for interleukin-1beta (IL-1beta), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and cytokine-induced neutrophil chemoattractant-1 (CINC-1). In another group of rats, daily behavioral measurements were made of the rats' responses to a blunt noxious mechanical stimulus (4 Newtons) applied to their tails. Primary hyperalgesia developed within 2 h of surgery and lasted for 6 days. The tissue concentrations of IL-1beta, IL-6, and CINC-1 increased within 24 h of surgery, and TNF-alpha concentration increased within 48 h of surgery. Thereafter, cytokine concentrations remained elevated for 4 (IL-1beta and IL-6) to 8 days (CINC-1, TNF-alpha) after surgery. Control animals did not develop hyperalgesia and no changes in cytokines concentrations were detected. Thus, in our model of postoperative pain, secretion of inflammatory cytokines IL-1beta, IL-6, TNF-alpha, and CINC-1 was not essential for the initiation of postoperative hyperalgesia.  相似文献   

18.
The capacity of 12 cytokines to induce NO2- or H2O2 release from murine peritoneal macrophages was tested by using resident macrophages, or macrophages elicited with periodate, casein, or thioglycollate broth. Elevated H2O2 release in response to PMA was observed in resident macrophages after a 48-h incubation with IFN-gamma, TNF-alpha, TNF-beta, or CSF-GM. Of these, only IFN-gamma induced substantial NO2- secretion during the culture period. The cytokines inactive in both assays under the conditions tested were IL-1 beta, IL-2, IL-3, IL-4, IFN-alpha, IFN-beta, CSF-M, and transforming growth factor-beta 1. Incubation of macrophages with IFN-gamma for 48 h in the presence of LPS inhibited H2O2 production but augmented NO2- release, whereas incubation in the presence of the arginine analog NG-monomethylarginine inhibited NO2- release but not H2O2 production. Although neither TNF-alpha nor TNF-beta induced NO2- synthesis on its own, addition of either cytokine together with IFN-gamma increased macrophage NO2- production up to six-fold over that in macrophages treated with IFN-gamma alone. Moreover, IFN-alpha or IFN-beta in combination with LPS could also induce NO2- production in macrophages, as was previously reported for IFN-gamma plus LPS. These data suggest that: 1) tested as a sole agent, IFN-gamma was the only one of the 12 cytokines capable of inducing both NO2- and H2O2 release; 2) the pathways leading to secretion of H2O2 and NO2- are independent; 3) either IFN-gamma and TNF-alpha/beta or IFN-alpha/beta/gamma and LPS can interact synergistically to induce NO2- release.  相似文献   

19.
The i.p. injection of mice with highly purified recombinant human rIL-1 alpha or beta resulted in the rapid influx of a large number of polymorphonuclear neutrophils (PMN) into the peritoneal cavity. Significant increases in the number of PMN were induced by doses of IL-1 which ranged from 0.005 to 5 ng/injection. Interestingly the dose response for PMN influx was bell-shaped because 50 ng of IL-1 did not result in a significant increase in peritoneal PMN. IL-1 induced PMN infiltration was detectable by 1 h with peak levels of PMN obtained by about 2 h, followed by a subsequent decline by 24 h. Other cytokines, IL-2, IFN-gamma, IFN alpha beta, granulocyte-CSF, granulocyte-macrophage-CSF, IL-3, TNF-alpha, and TNF-beta were compared to IL-1 for their ability to induce a PMN influx into the peritoneum. Only TNF-alpha or TNF-beta (lymphotoxin) were able to induce a significant influx of PMN within 2 h. However, based on total protein administered, about 100 times more TNF than IL-1 was required to produce a comparable PMN infiltration. Intraperitoneal injection of inhibitors of the cyclooxygenase or lipoxygenase pathways did not inhibit the IL-1-induced influx of PMN. Also, neither IL-1 nor TNF triggered an increase in PG or leukotriene release from peritoneal cells in vitro. Furthermore, direct peritoneal injection of leukotriene B4, a potent PMN chemoattractant in vitro, did not induce any significant increase in PMN in the peritoneal cavity indicating that chemotactic activity alone is insufficient for inducing peritoneal infiltration. These results suggest that the local production of very low levels of IL-1 in vivo would be sufficient to initiate a sequence of events that results in a rapid accumulation of PMN. Because IL-1 was not chemotactic for PMN in vitro, our data suggest that IL-1 induces production of factors that are chemotactic for PMN. Alternatively, IL-1 may act on other stages of the complex sequence of events that regulates the emigration of PMN into tissue sites in vivo. The synergy apparent in PMN influx when suboptimal concentrations of IL-1 and TNF were injected suggests that the local production of very low concentrations of these cytokines in situ could play a critical role in the emigration of PMN during infection.  相似文献   

20.
The regulation of macrophage phenotype by neutrophils was studied in the s.c. polyvinyl alcohol sponge wound model in mice made neutropenic by anti-Gr-1 Ab, as well as in cell culture. Wounds in neutropenic mice contained 100-fold fewer neutrophils than those in nonneutropenic controls 1 day after sponge implantation. Wound fluids from neutropenic mice contained 68% more TNF-alpha, 168% more IL-6, and 61% less TGF-beta1 than those from controls. Wound fluid IL-10 was not different between the two groups, and IL-4 was not detected. Intracellular TNF-alpha staining was greater in cells isolated from neutropenic wounds than in those from control wounds. The hypothesis that wound neutrophil products modulate macrophage phenotype was tested in Transwell cocultures of LPS-stimulated J774A.1 macrophages and day 1 wound cells (84% neutrophils/15% macrophages). Overnight cocultures accumulated 60% less TNF-alpha and IL-6 than cultures of J774A.1 alone. The suppression of cytokine release was mediated by a soluble factor(s), because culture supernatants from wound cells inhibited TNF-alpha and IL-6 release from LPS-stimulated J774A.1 cells. Culture supernatants from purified wound neutrophils equally suppressed TNF-alpha release from LPS-stimulated J774A.1 cells. Wound cell supernatants also suppressed TNF-alpha and superoxide release from murine peritoneal macrophages. The TNF-alpha inhibitory factor has a molecular mass <3000 Da and is neither PGE2 nor adenosine. The present findings confirm a role for neutrophils in the regulation of innate immune responses through modulation of macrophage phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号