首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yao C  Donelson JE  Wilson ME 《Eukaryotic cell》2007,6(10):1905-1912
Major surface protease (MSP), also called GP63, is a virulence factor of Leishmania spp. protozoa. There are three pools of MSP, located either internally within the parasite, anchored to the surface membrane, or released into the extracellular environment. The regulation and biological functions of these MSP pools are unknown. We investigated here the trafficking and extrusion of surface versus internal MSPs. Virulent Leishmania chagasi undergo a growth-associated lengthening in the t(1/2) of surface-localized MSP, but this did not occur in the attenuated L5 strain. The release of surface-localized MSP was enhanced in a dose-dependent manner by MbetaCD, which chelates membrane cholesterol-ergosterol. Furthermore, incubation of promastigotes at 37 degrees C with Matrigel matrix, a soluble basement membrane extract of Engelbreth-Holm-Swarm tumor cells, stimulated the release of internal MSP but not of surface-located MSP. Taken together, these data indicate that MSP subpopulations in distinct cellular locations are released from the parasite under different environmental conditions. We hypothesize that the internal MSP with its lengthy t(1/2) does not serve as a pool for promastigote surface MSP in the sand fly vector but that it instead functions as an MSP pool ready for quick release upon inoculation of metacyclic promastigotes into mammals. We present a model in which these different MSP pools are released under distinct life cycle-specific conditions.  相似文献   

2.
Homogenous metacyclic promastigotes of Leishmania chagasi were isolated by buoyant density from in vitro heterogeneous cultures and used for biochemical characterization of isoforms of the major surface protease (MSP). Compared to stationary phase promastigotes, metacyclic cells had three times more MSP, produced 3-fold higher parasite loads in a mouse model in vivo, and were more resistant to complement-mediated lysis in vitro. These metacyclic L. chagasi expressed both the virulence-associated 59-kDa, and the constitutively expressed 63-kDa, isoforms of MSP.  相似文献   

3.
4.
5.
Seale JW 《Proteins》2006,64(2):385-390
One of the molecular factors contributing to Leishmania sp. virulence and pathogenesis is the major surface metalloprotease GP63, alternatively called leishmanolysin, MSP, and PSP (EC 3.4.24.36). Here, the molecular dynamics simulation of Leishmania major GP63 in water at pH 7 is reported. Upon solvation, GP63 undergoes a sharp structural relaxation with respect to the crystal structure. The fluctuation pattern occurs essentially in solvent-exposed nonstructured regions. By contrast, the active site turns out to be rigid. Essential dynamics and dynamic-domain analyses, both carried out on the equilibrated portion of GP63, show that the fingerprint fluctuations of GP63 are practically characterized by the motion of a large part of the N-terminal domain. These results appear to be in line with substrate recognition and (pro)enzyme activation played by the N-terminal domain of GP63. A systematic analysis among a series of 10 homologs of GP63 also shows that the residues involved in the interdomain bending result highly conserved. This finding also suggests possible relationship between the maintainance of proteolytic activity and the similarity of the dynamical properties of the related enzymes.  相似文献   

6.
7.
The genome of the African trypanosome Trypanosoma brucei (Tb) contains at least three gene families (TbMSP-A, -B, and -C) encoding homologues of the abundant major surface protease (MSP, previously called GP63), which is found in all Leishmania species. TbMSP-B mRNA occurs in both procyclic and bloodstream trypanosomes, whereas TbMSP-A and -C mRNAs are detected only in bloodstream organisms. RNA interference (RNAi)-mediated gene silencing was used to investigate the function of TbMSP-B protein. RNAi directed against TbMSP-B but not TbMSP-A ablated the steady state TbMSP-B mRNA levels in both procyclic and bloodstream cells but had no effect on the kinetics of cultured trypanosome growth in either stage. Procyclic trypanosomes have been shown previously to have an uncharacterized cell surface metalloprotease activity that can release ectopically expressed surface proteins. To determine whether TbMSP-B is responsible for this release, transgenic variant surface glycoprotein 117 (VSG117) was expressed constitutively in T. brucei procyclic TbMSP-RNAi cell lines, and the amount of surface VSG117 was determined using a surface biotinylation assay. Ablation of TbMSP-B but not TbMSP-A mRNA resulted in a marked decrease in VSG release with a concomitant increase in steady state cell-associated VSG117, indicating that TbMSP-B mediates the surface protease activity of procyclic trypanosomes. This finding is consistent with previous pharmacological studies showing that peptidomimetic collagenase inhibitors block release of transgenic VSG from procyclic trypanosomes and are toxic for bloodstream but not procyclic organisms.  相似文献   

8.
9.
10.
5'-UTR RNA G-quadruplexes: translation regulation and targeting   总被引:1,自引:0,他引:1  
  相似文献   

11.
Alvarez-Valin F  Tort JF  Bernardi G 《Genetics》2000,155(4):1683-1692
In this work we analyze the variability in substitution rates in the GP63 gene from Leishmania. By using a sliding window to estimate substitution rates along the gene, we found that the rate of synonymous substitutions along the GP63 gene is highly correlated with both the rate of amino acid substitution and codon bias. Furthermore, we show that comparisons involving genes that represent independent phylogenetic lines yield very similar divergence/conservation patterns, thus suggesting that deterministic forces (i.e., nonstochastic forces such as selection) generated these patterns. We present evidence indicating that the variability in substitution rates is unambiguously related to functionally relevant features. In particular, there is a clear relationship between rates and the tertiary structure of the encoded protein since all divergent segments are located on the surface of the molecule and facing one side (almost parallel to the cell membrane) on the exposed surface of the organism. Remarkably, the protein segments encoded by these variable regions encircle the active site in a funnel-like distribution. These results strongly suggest that the pattern of nucleotide divergence and, notably, of synonymous divergence is affected by functional constraints.  相似文献   

12.
GPI8 is a clan CD, family C13 cysteine protease and the catalytic core of the GPI-protein transamidase complex. In Leishmania mexicana, GPI8 is nonessential, and Deltagpi8 mutants lack the GPI-anchored metalloprotease GP63, which is the major surface protein of promastigotes. We have identified the active site histidine and cysteine residues of leishmanial GPI8 and generated Deltagpi8 lines expressing modified GPI8 proteins. This has allowed us to study the processing and trafficking of GP63 in wild type and Deltagpi8 mutants. We show using pulse-chase labeling that in Deltagpi8 non-GPI-anchored GP63 was glycosylated and secreted without further processing from the cell with a t(12) of 120 min. This secretion was prevented by growth of cells in the presence of tunicamycin, indicating that glycosylation is necessary for secretion of non-GPI-anchored proteins. In contrast, in wild type cells the majority of GP63 was rapidly glycosylated, GPI-anchored, and trafficked to the surface with defined processing intermediate forms. Tunicamycin inhibited glycosylation but did not prevent GPI anchor addition or trafficking. These results show that GPI-anchored and unanchored GP63 are trafficked via different pathways. In addition, the balance between GPI anchor addition and secretion of GP63 in Leishmania can vary depending on the activity of the GPI-protein transamidase, which has implications for the host-parasite interaction.  相似文献   

13.
14.
15.
Autoregulation of GLD-2 cytoplasmic poly(A) polymerase   总被引:1,自引:0,他引:1  
Cytoplasmic polyadenylation regulates mRNA stability and translation and is required for early development and synaptic plasticity. The GLD-2 poly(A) polymerase catalyzes cytoplasmic polyadenylation in the germline of metazoa. Among vertebrates, the enzyme is encoded by two isoforms of mRNA that differ only in the length of their 3'-UTRs. Here we focus on regulation of vertebrate GLD-2 mRNA. We show that the 3'-UTR of GLD-2 mRNA elicits its own polyadenylation and translational activation during frog oocyte maturation. We identify the sequence elements responsible for repression and activation, and demonstrate that CPEB and PUF proteins likely mediate repression in the resting oocyte. Regulated polyadenylation of GLD-2 mRNA is conserved, as are the key regulatory elements. Poly(A) tails of GLD-2 mRNA increase in length in the brain in response to neuronal stimulation, suggesting that a comparable system exists in that tissue. We propose a positive feedback circuit in which translation of GLD-2 mRNA is stimulated by its polyadenylation, thereby reinforcing the switch to polyadenylate and activate batteries of mRNAs.  相似文献   

16.
Leishmania chagasi causes visceral leishmaniasis, a potentially fatal disease of humans. Within the sand fly vector, L. chagasi replicates as promastigotes which undergo complex changes in morphology as they progress from early stage procyclic promastigotes, to intermediate stage leptomonad and nectomonad promastigotes, and ultimately to terminal stage metacyclic promastigotes that are highly infective to vertebrates. This developmental progression is largely recapitulated in vitro using axenic promastigote cultures that have been passaged only a few times. Within a single passage (which takes about a week), axenic cultures progress from logarithmic to stationary growth phases; parasites within those growth phases progress from stages that do not have metacyclic cell properties to ones that do. Interestingly, repeated serial passage of promastigote cultures will result in cell populations that exhibit perturbations in developmental progression, in expression levels of surface macromolecules (major surface protease, MSP, and promastigote surface antigen, PSA), and in virulence properties, including resistance to serum lysis. Experiments were performed to determine whether there exists a direct relationship between promastigote developmental form and perturbations associated with repeated serial passage. Passage 2 to passage 4 L. chagasi cultures at stationary growth phase were predominately (>85%) comprised of metacyclic promastigotes and exhibited high resistance to serum lysis and high levels of MSP and PSA. Serial passaging 8, or more, times resulted in a stationary phase population that was largely (>85%) comprised of nectomonad promastigotes, almost completely devoid (<2%) of metacyclic promastigotes, and that exhibited low resistance to serum lysis and low levels of MSP and PSA. The study suggests that the loss of particular cell properties seen in cells from serially passaged cultures is principally due to a dramatic reduction in the proportion of metacyclic promastigotes. Additionally, the study suggests that serially passaged cultures may be a highly enriched source of nectomonad-stage promastigotes, a stage that has largely been characterized only in mixtures containing other promastigote forms.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号