首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kinetic study of the interaction of bivalent and monovalent sugar ligands with a lectin was undertaken with the aid of surface plasmon resonance (SPR) method. The study involved a series of bivalent α-d-mannopyranoside containing sugar ligands, with systematic variation in the distance between the sugar ligands. The detailed kinetic studies showed that bivalent ligands underwent a faster association (k on) and a slower dissociation (k off) of the ligand–lectin complexes, in comparison to the monovalent ligand–lectin complexes. The kinetic constants were complemented further by assessing the thermodynamic parameters with the aid of isothermal titration calorimetry (ITC). The initiation of cross-linking of ligand–lectin interactions emerge from the early stages of the complexation. The dynamic light scattering (DLS) and the transmission electron microscopy (TEM) techniques allowed judging the sizes and morphologies of the complex in the solution and solid states, respectively.  相似文献   

2.
Dam TK  Brewer CF 《Biochemistry》2008,47(33):8470-8476
Many biological ligands are composed of clustered binding epitopes. However, the effects of clustered epitopes on the affinity of ligand-receptor interactions in many cases are not well understood. Clustered carbohydrate epitopes are present in naturally occurring multivalent carbohydrates and glycoproteins, which are receptors on the surface of cells. Recent studies have provided evidence that the enhanced affinities of lectins, which are carbohydrate binding proteins, for multivalent carbohydrates and glycoproteins are due to internal diffusion of lectin molecules from epitope to epitope in these multivalent ligands before dissociation. Indeed, binding of lectins to mucins, which are large linear glycoproteins, appears to be similar to the internal diffusion mechanism(s) of protein ligands binding to DNA, which have been termed the "bind and slide" or "bind and hop" mechanisms. The observed increasing negative cooperativity and gradient of decreasing microaffinity constants of a lectin binding to multivalent carbohydrates and glycoproteins result in an initial fraction of lectin molecules that bind with very high affinity and dynamic motion. These findings have important implications for the mechanisms of binding of lectins to mucins, and for other ligand-biopolymer interactions and clustered ligand-receptor systems in general.  相似文献   

3.
For tissue engineering applications, it is necessary to balance the need for specific biological interactions with the need to prevent unfavorable nonspecific interactions. For this purpose, novel poly[(organo)phosphazenes] were synthesized having galactose and/or poly(ethylene glycol) (PEG) side chains. The synthesis was described previously. Here, we investigate the human serum albumin (HSA) adhesion to these polymers using surface plasmon resonance (SPR). We could conclude that the incorporation of PEG reduced the protein adsorption. The influence of the galactose moieties was investigated using SPR and a sugar-lectin binding assay. The interaction between a lectin (Peanut agglutinin, PNA or Ricinus communis-agglutinin, RCA) and the polyphosphazene derivatives was evaluated. Type IIA polymers, having aminohexyl-galactose, phenylalanine ethyl ester, and glycine ethyl ester side chains, were capable of binding with the lectin. As the amount of galactose was increased, the extent of the galactose specific lectin binding was also increased (higher RU or absorbance). PEG containing polymers failed to bind specifically with the lectin. The presence of PEG, either as a spacer or as additional chains, interfered with the establishment of contact between the galactose and the binding site on the lectin. The adsorption of PNA or RCA to these types of polymers was attributed to nonspecific interactions. SPR was also used to determine rate and equilibrium constants. In addition the effect of the addition of water soluble polyphosphazenes on the enzymatic cleavage of o-nitrophenyl-beta-D-galactopyranoside was investigated. The galactose moieties were not available as inhibitors because of the presence of PEG.  相似文献   

4.
We present for the first time the synthesis of sequence-defined monodisperse glycopolymer segments via solid-phase polymer synthesis. Functional building blocks displaying alkyne moieties and hydrophilic ethylenedioxy units were assembled stepwise on solid phase. The resulting polymer segments were conjugated with mannose sugars via 1,3-dipolar cycloaddition. The obtained mono-, di-, and trivalent mannose structures were then subject to Con A lectin binding. Surface plasmon resonance studies showed a nonlinear increase in binding regarding the number and spacing of sugar ligands. The results of Con A lectin binding assays indicate that the chemical composition of the polymeric scaffold strongly contributes to the binding activities as well as the spacing between the ligands and the number of presented mannose units. Our approach now allows for the synthesis of highly defined glycooligomers and glycopolymers with a diversity of properties to investigate systematically multivalent effects of polymeric ligands.  相似文献   

5.
We developed a surface plasmon resonance (SPR) assay to estimate the interactions of antimicrobial agents with the dipeptide terminal of lipid II (d-alanyl-d-alanine) and its analogous dipeptides (l-alanyl-l-alanine and d-alanyl-d-lactate) as ligands. The established SPR method showed the reproducible immobilization of ligands on sensor chip and analysis of binding kinetics of antimicrobial agents to ligands. The ligand-immobilized chip could be used repeatedly for at least 200 times for the binding assay of antimicrobial agents, indicating that the ligand-immobilized chip is sufficiently robust for the analysis of binding kinetics. In this SPR system, the selective and specific binding characteristics of vancomycin and its analogs to the ligands were estimated and the kinetic parameters were calculated. The kinetic parameters revealed that one of the remarkable binding characteristics was the specific interaction of vancomycin to only the d-alanyl-d-alanine ligand. In addition, the kinetic binding data of SPR showed close correlation with the antimicrobial activity. The SPR data of other antimicrobial agents (e.g., teicoplanin) to the ligands showed correlation with the antimicrobial activity on the basis of the therapeutic mechanism. Our SPR method could be a valuable tool for predicting the binding characteristics of antimicrobial agents to the dipeptide terminal of lipid II.  相似文献   

6.
Synthetic cluster glycosides have often been used to unravel mechanisms of carbohydrate-protein interactions. Although synthetic cluster glycosides are constituted on scaffolds to achieve high avidities in lectin binding, there have been no known attempts to modulate the orientations of the sugar clusters with the aid of a functional scaffold onto which the sugar units are linked. Herein, we describe synthesis, physical, and lectin-binding studies of a series of alpha-D-mannopyranoside and beta-D-galactopyranosyl-(1-->4)-beta-D-glucopyranoside glycoclusters that are attached to a photoswitchable azobenzenoid core. These glycoclusters were synthesized by the amidation of amine-tethered glycopyranosides with azobenzene carbonyl chlorides. From kinetic studies, the cis forms of the azobenzene-glycopyranoside derivative were found to be more stable in aqueous solutions than in organic solvents. Molecular modeling studies were performed to estimate the relative geometries of the photoswitchable glycoclusters in the trans- and cis-isomeric forms. Isothermal titration calorimetry (ITC) was employed to assess the binding of these glycoclusters to lectins peanut agglutinin (PNA) and concanavalin A (Con A). Although binding affinities were enhanced several orders higher as the valency of the sugar was increased, a biphasic-binding profile in ITC plots was observed during few glycoclusters lectin-binding processes. The biphasic-binding profile indicates a "cooperativity" in the binding process. An important outcome of this study is that in addition to inherent clustering of the sugar units as a molecular feature, an induced clustering emanates because of the isomerization of the trans form of the azobenzene scaffold to the cis-isomeric form.  相似文献   

7.
The development of compounds with strong affinity for the receptor DC-SIGN is a topic of remarkable interest due to the role that this lectin plays in several pathogen infection processes and in the modulation of the immune response. DC-SIGN recognizes mannosylated and fucosylated oligosaccharides in a multivalent manner. Therefore, multivalent carbohydrate systems are required to interact in an efficient manner with this receptor and compete with the natural ligands. We have previously demonstrated that linear pseudodi- and pseudotrisaccharides are adequate ligands for DC-SIGN. In this work, we show that multivalent presentations of these glycomimetics based on polyester dendrons and dendrimers lead to very potent inhibitors (in the nanomolar range) of cell infection by Ebola pseudotyped viral particles by blocking DC-SIGN receptor. Furthermore, SPR model experiments confirm that the described multivalent glycomimetic compounds compete in a very efficient manner with polymannosylated ligands for binding to DC-SIGN.  相似文献   

8.
The design of glycoconjugates to allow the generation of multivalent ligands capable of interacting with the receptor DC-SIGN is a topic of high interest due to the role played by this lectin in pathogen infections. Mannose, a ligand of this lectin, could be conjugated at two different positions, 1 and 6, not implicated in the binding process. We have prepared mannose conjugates at these two positions with a long spacer to allow their attachment to a biosensor chip surface. Analysis of the interaction between these surfaces and the tetravalent extracellular domain (ECD) of DC-SIGN by SPR biosensor has demonstrated that both positions are available for this conjugation without affecting the protein binding process. These results emphasize the possibility to conjugate mannose at position 6, allowing the incorporation of hydrophobic groups at the anomeric position to interact with hydrophobic residues in the carbohydrate recognition domain of DC-SIGN, increasing binding affinities. This fact is relevant for the future design of new ligands and the corresponding multivalent systems for DC-SIGN.  相似文献   

9.
In order to identify the forces involved in the binding and to understand the mechanism involved, equilibrium and kinetic studies were performed on the binding of the winged bean acidic lectin to human erythrocytes. The magnitudes of delta S and delta H were positive and negative respectively, an observation differing markedly from the lectin-simple sugar interactions where delta S and delta H are generally negative. Analysis of the sign and magnitudes of these values indicate that ionic and hydrogen bonded interactions prevail over hydrophobic interactions resulting in net -ve delta H (-37.12 kJ.mol-1) and +ve delta S (14.4 J.mole-1 K-1 at 20 degrees C), thereby suggesting that this entropy driven reaction also reflects conformational changes in the lectin and/or the receptor. Presence of two kinds of receptors for WBA II on erythrocytes, as observed by equilibrium studies, is consistent with the biexponential dissociation rate constants (at 20 degrees C K1 = 1.67 x 10(-3) M-1 sec-1 and K2 = 11.1 x 10(-3) M-1 sec-1). These two rate constants differed by an order of magnitude accounting for the difference in the association constants of the two receptors of WBA II. However, the association process remains monoexponential suggesting no observable difference in the association rates of the lectin molecule with both the receptors, under the experimental conditions studied. The thermodynamic parameters calculated from kinetic data correlate well with those observed by equilibrium. A two-step binding mechanism is proposed based on the kinetic parameters for WBA II-receptor interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Cell surface multivalent ligands, such as proteoglycans and mucins, are often tethered by a single attachment point. In vitro, however, it is difficult to immobilize multivalent ligands at single sites due to their heterogeneity. Moreover, multivalent ligands often lack a single group with reactivity orthogonal to other functionality in the ligand. Biophysical analyses of multivalent ligand-receptor interactions would benefit from the availability of strategies for uniform immobilization of multivalent ligands. To this end, we report the design and synthesis of a multivalent ligand that has a single terminal orthogonal functional group and we demonstrate that this material can be selectively immobilized onto a surface suitable for surface plasmon resonance (SPR) experiments. The polymeric ligand we generated displays multiple copies of 3,6-disulfogalactose, and it can bind to the cell adhesion molecules P- and L-selectin. Using SPR measurements, we found that surfaces displaying our multivalent ligands bind specifically to P- and L-selectin. The affinities of P- and L-selectin for surfaces displaying the multivalent ligand are five- to sixfold better than the affinities for a surface modified with the corresponding monovalent ligand. In addition to binding soluble proteins, surfaces bearing immobilized polymers bound to cells displaying L-selectin. Cell binding was confirmed by visualizing adherent cells by fluorescence microscopy. Together, our results indicate that synthetic surfaces can be created by selective immobilization of multivalent ligands and that these surfaces are capable of binding soluble and cell-surface-associated receptors with high affinity.  相似文献   

11.
Oligosaccharides are increasingly being recognized as important partners in receptor-ligand binding and cellular signaling. Surface plasmon resonance (SPR) is a very powerful tool for the real-time study of the specific interactions between biological molecules. We report here an advanced method for the immobilization of oligosaccharides in clustered structures for SPR and their application to the analysis of heparin-protein interactions. Reductive amination reactions and linker molecules were designed and optimized. Using mono-, tri-, or tetravalent linker compounds, we incorporated synthetic structurally defined disaccharide units of heparin and immobilized them as ligands for SPR. Their binding to an important hemostatic protein, von Willebrand factor (vWf), and its known heparin-binding domain was quantitatively analyzed. These multivalent ligand conjugates exhibited reproducible binding behavior, with consistency of the surface conditions of the SPR chip. This novel technique for oligosaccharide immobilization in SPR studies is accurate, specific, and easily applicable to both synthetic and naturally derived oligosaccharides.  相似文献   

12.
Polyvalent carbohydrate-protein interactions play a key role in bio- and pathological processes, including cell-cell communication and pathogen invasion. In order to study, control and manipulate these interactions gold nanoparticles have been employed as a 3D scaffold, presenting carbohydrate ligands in a multivalent fashion for use as high affinity binding partners and a model system for oligosaccharide presentation at biomacromolecular surfaces. In this study, the binding of a series of mannose-functionalised gold nanoparticles to the dimeric BC2L-A lectin from Burkholderia cenocepacia has been evaluated. BC2L-A is known to exhibit a high specificity for (oligo)mannosides. Due to the unique structure and binding nature of this lectin, it provides a useful tool to study (oligo)saccharides presented on multivalent scaffolds. Surface plasmon resonance and isothermal titration calorimetric assays were used to investigate the effect of ligand presentation density towards binding to the bacterial lectin. We show how a combination of structural complementarities between ligand presentation and lectin architecture and statistical re-binding effects are important for increasing the avidity of multivalent ligands for recognition by their protein receptors; further demonstrating the application of glyconanotechnology towards fundamental glycobiology research as well as a potential towards biomedical diagnostics and therapeutic treatments.  相似文献   

13.
A biosensor based on the surface plasmon resonance (SPR) principle was used for kinetic analysis of lectin interactions with different immobilized saccharide structures. A novel affinity ligands beta-D-glycopyranosylmethylamines derived from common D-aldohexoses linked to the carboxymethyl dextran layer of the SPR sensor surface served for interactions with a wide range of lectins. The method of preparation and use of the beta-D-mannopyranosyl glycosylated sensor surface was described. The results of affinity analysis of lectin-ligand interactions were evaluated and compared with data obtained from measurements using commercially available p-aminophenyl alpha-D-glycopyranosides. Possible applications and advantages of C- and O-glycosylated SPR biosensors are discussed.  相似文献   

14.
15.
The Grb2 adapter protein is involved in the activation of the Ras signaling pathway. It recruits the Sos protein by binding of its two SH3 domains to Sos polyproline sequences. We observed that the binding of Grb2 to a bivalent ligand, containing two Sos-derived polyproline-sequences immobilized on a SPR sensor, shows unusual kinetic behavior. SPR-kinetic analysis and supporting data from other techniques show major contributions of an intermolecular bivalent binding mode. Each of the two Grb2 SH3 domains binds to one polyproline-sequence of two different ligand molecules, facilitating binding of a second Grb2 molecule to the two remaining free polyproline binding sites. A molecular model based on the X-ray structure of the Grb2 dimer shows that Grb2 is flexible enough to allow this binding mode. The results fit with a role of Grb2 in protein aggregation, achieving specificity by multivalent interactions, despite the relatively low affinity of single SH3 interactions.  相似文献   

16.
Although surface plasmon resonance (SPR) biosensor technique has been used to study protein-protein interactions and to detect conformational changes of proteins, it has not been shown whether the SPR biosensor can be used to study a complex kinetic system such as the protein-DNA binding, which sometimes involves several binding steps as well as dynamic conformational changes of the complexes. In this study, we have used SPR biosensor and T7 polymerase as the model system to study the interactions of the polymerase with a series of DNA template-primer duplexes containing different number of mismatches and GC contents at various positions near the primer 3'-end. In general, the binding constants measured by the SPR are several magnitudes smaller than those determined in solution, indicating the limitation of the surface-based technique for measuring solution-based interactions. However, the distinct polymerase binding profiles obtained for DNA duplexes differed by as low as a single mismatch suggest that the SPR data can be used for relative comparison purpose among a set of experiments carried out under identical conditions. The successful fitting of the binding profiles using the established translocation model also demonstrated that SPR can be used to monitor conformational changes, as well as to derive relative kinetic values, within a complicated DNA-protein interaction system. The results also demonstrated that SPR biosensor may be used as a sensitive technique for studying molecular recognition events, such as single-base discrimination involved in protein-DNA interactions.  相似文献   

17.
Engineered receptor fragments and glycoprotein ligands employed in different assay formats have been used to dissect the basis for the dramatic enhancement of binding of two model membrane receptors, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and the macrophage galactose lectin, to glycoprotein ligands compared to simple sugars. These approaches make it possible to quantify the importance of two major factors that combine to enhance the affinity of single carbohydrate-recognition domains (CRDs) for glycoprotein ligands by 100-to 300-fold. First, the presence of extended binding sites within a single CRD can enhance interaction with branched glycans, resulting in increases of fivefold to 20-fold in affinity. Second, presentation of glycans on a glycoprotein surface increases affinity by 15-to 20-fold, possibly due to low-specificity interactions with the surface of the protein or restriction in the conformation of the glycans. In contrast, when solution-phase networking is avoided, enhancement due to binding of multiple branches of a glycan to multiple CRDs in the oligomeric forms of these receptors is minimal and binding of a receptor oligomer to multiple glycans on a single glycoprotein makes only a twofold contribution to overall affinity. Thus, in these cases, multivalent interactions of individual glycoproteins with individual receptor oligomers have a limited role in achieving high affinity. These findings, combined with considerations of membrane receptor geometry, are consistent with the idea that further enhancement of the binding to multivalent glycoprotein ligands requires interaction of multiple receptor oligomers with the ligands.  相似文献   

18.
We have previously reported a facile and convenient method for the preparation of a new type of lactose-CdSeS/ZnS quantum dots conjugates (Lac-QDs) that exhibit biocompatibility, noncytotoxicity and specificity to leukocytes. In order to further study the carbohydrate–protein interactions, a series of Lac-QDs with different lactose densities and a PEGylated (n = 3) lactose-QDs conjugate (LacPEG-QDs) with more flexible sugar ligands were prepared. The amount of the sugar molecules on QDs can be determined by NMR, which was in agreement with the results from TGA determination. The formula of the conjugates was determined with ICP-OES. The interactions between the conjugated QDs and the PNA protein were measured using SPR, which revealed that higher lactose density favored binding affinity under the same concentration, and Lac-QDs exhibit higher affinity than LacPEG-QDs. We further used a solid phase assay to assess the anti-adhesion activity of Lac-QDs and LacPEG-QDs on the cell level. The results showed that Lac-QDs had stronger activity in preventing THP1 from adhering to HUVEC than LacPEG-QDs, which was consistent with the SPR results. We reasoned that decrease in the conformational entropy induced by appropriate restriction of sugar flexibility could enhance the binding affinity of glyco-QDs, which implies that entropy change may be the main contributor to the interaction between high valent glyco-QDs and protein. The fabrication of lactose on QDs provides a fluorescent multivalent carbohydrate probe that can be used as mimics of glycoprotein for the study of carbohydrate–protein interactions and cell imaging.  相似文献   

19.
Tateno H  Crocker PR  Paulson JC 《Glycobiology》2005,15(11):1125-1135
Mouse sialic acid-binding immunoglobulin-like lectin F (Siglec-F) is an eosinophil surface receptor, which contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain, implicating it as a regulator of cell signaling as documented for other siglecs. Here, we show that the sialoside sequence 6'-sulfo-sLe(X) (Neu5Acalpha2-3[6-SO4] Galbeta1-4[Fucalpha1-3]GlcNAc) is a preferred ligand for Siglec-F. In glycan array analysis of 172 glycans, recombinant Siglec-F-Fc chimeras bound with the highest avidity to 6'-sulfo-sLe X. Secondary analysis showed that related structures, sialyl-Lewis X (sLe X) and 6-sulfo-sLe X containing 6-GlcNAc-SO4 showed much lower binding avidity, indicating significant contribution of 6-Gal-SO4 on Siglec-F binding to 6'-sulfo-sLe x. The lectin activity of Siglec-F on mouse eosinophils was "masked" by endogenous cis ligands and could be unmasked by treatment with sialidase. Unmasked Siglec-F mediated mouse eosinophil binding and adhesion to multivalent 6'-sulfo-sLe X structure, and these interactions were inhibited by anti-Siglec-F monoclonal antibody (mAb). Although there is no clear-cut human ortholog of Siglec-F, Siglec-8 is encoded by a paralogous gene that is expressed selectively by human eosinophils and has recently been found to recognize 6'-sulfo-sLe X. These observations suggest that mouse Siglec-F and human Siglec-8 have undergone functional convergence during evolution and implicate a role for the interaction of these siglecs with their preferred 6'-sulfo-sLe X ligand in eosinophil biology.  相似文献   

20.
Loka RS  Cairo CW 《Carbohydrate research》2010,345(18):2641-2647
The detection of carbohydrate-protein interactions is often performed using techniques that require surface immobilization of the lectin or the glycan. A commonly used assay for lectin binding is surface plasmon resonance (SPR). We describe an implementation of the Staudinger ligation as a method to immobilize carbohydrate epitopes to a biosensor surface. This was accomplished by first introducing an azide functionality to a carboxymethyldextran surface, followed by reaction with a phosphane-modified carbohydrate ligand. The chemistry employed is extremely mild and was easily adapted to a commercial biosensor system. Using this approach, we investigated the binding of jacalin and wheat germ agglutinin (WGA) to galactose, lactose, and N-acetyl-lactosamine. We observed that WGA binding shows evidence of multivalent interaction with the surface. Additionally, we found that jacalin binding was influenced by the presence of a flexible and hydrophobic galactosyl aglycone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号