首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Metabolism and tension were examined in single fibers of the semitendinosus muscle of Rana pipiens at 15 degree C after excitation- contraction uncoupling by stretch and hypertonicity. Interrupted tetanic stimulation at 20 HZ for 150 s, of control fibers in isotonic Ringer at a rest sarcomere length (SL) of 2.3 micrometers, resulted in a steadily declining tension, stimulated glycolysis, and significantly reduced fiber phosphocreatine (PCr) and ATP concentrations. Stretching resting muscle fibers to an SL of 4.7 micrometers did not alter metabolite concentrations, but glucose-6-phosphate rose and PCr fell markedly when the stretched fibers were stimulated tetanically, although tension was absent. Immersion of untetanized fibers in 2.5 X isotonic Ringer produced a transient rise in resting tension, an increase in glucose-6-phosphate, and a significant reduction in PCr. During the transient rise in resting tension, PCr consumption per unit of tension-time integral was the same as that in fibers stimulated tetanically in isotonic Ringer. Tetanization of fibers in hypertonic solution did not further alter metabolite concentrations or produce tension. The results indicate that exposure to hypertonicity induces an increase in both tension and consumption of high-energy phosphate bonds (approximately P) in resting fibers, but stretch does not. during tetanic stimulation, stretch interferes with contraction but does not prevent activation, whereas hypertonicity inhibits activation as well as contraction.  相似文献   

2.
Measurements of the intracellular free concentration of Ca2+ ([Ca2+]i) were performed during fatiguing stimulation of intact, single muscle fibers, which were dissected from a mouse foot muscle and loaded with fura-2. Fatigue, which was produced by repeated 100-Hz tetani, generally occurred in three phases. Initially, tension declined rapidly to approximately 90% of the original tension (0.9 Po) and during this period the tetanic [Ca2+]i increased significantly (phase 1). Then followed a lengthy period of almost stable tension production and tetanic [Ca2+]i (phase 2). Finally, both the tetanic [Ca2+]i and tension fell relatively fast (phase 3). The resting [Ca2+]i rose continuously throughout the stimulation period. A 10-s rest period during phase 3 resulted in a significant increase of both tetanic [Ca2+]i and tension, whereas a 10-s pause during phase 2 did not have any marked effect. Application of caffeine under control conditions and early during phase 2 resulted in a substantial increase of the tetanic [Ca2+]i but no marked tension increase, whereas caffeine applied at the end of fatiguing stimulation (tension depressed to approximately 0.3 Po) gave a marked increase of both tetanic [Ca2+]i and tension. The tetanic [Ca2+]i for a given tension was generally higher during fatiguing stimulation than under control conditions. Fatigue developed more rapidly in fibers exposed to cyanide. In these fibers there was no increase of tetanic [Ca2+]i during phase 1 and the increase of the resting [Ca2+]i during fatiguing stimulation was markedly larger. The present results indicate that fatigue produced by repeated tetani is caused by a combination of reduced maximum tension-generating capacity, reduced myofibrillar Ca2+ sensitivity, and reduced Ca2+ release from the sarcoplasmic reticulum. The depression of maximum tension-generating capacity develops early during fatiguing stimulation and it is of greatest importance for the force decline at early stages of fatigue. As fatigue gets more severe, reduced Ca2+ sensitivity and reduced Ca2+ release become quantitatively more important for the tension decline.  相似文献   

3.
The mechanism of muscle fatigue was studied by 31P-MRS. During tetanic contraction for 2 minutes(min), the tension measured with a strain gauge and Phosphocreatine(PCr)/Inorganic phosphate(Pi)+ Phosphomonoester(PME) ratio decreased to 31.5 +/- 4.4% of the control value and 0.6 +/- 0.1, respectively. The intracellular pH(pH) also decreased to 6.62 +/- 0.04. Toward the end of the stimulation, the tension decreased to 25.3 +/- 1.9% of the control value. However, during 20min stimulation, the PCr/(Pi+PME) ratio increased to 2.5 +/- 0.5 and the pH to 6.91 +/- 0.04. These results show that muscular fatigue is ascribable not to a decreased level of high energy metabolites required for actomyosin ATPase, but to an increase in the threshold intensity of excitation in excitation-contraction coupling.  相似文献   

4.
Yu ZB  Jiao B  Wang YY  Li H 《生理学报》2008,60(3):362-368
甲状腺功能亢进(甲亢)时甲状腺素分泌增加,不仅使具有神经支配的慢缩型肌纤维向快缩型转化,而且改变骨骼肌的强直收缩功能.因此,甲亢性肌病的肌肉乏力可能与骨骼肌强直收缩易发生疲劳有关.本实验在离体条件下,观测甲亢4周引起的大鼠慢缩肌--比目鱼肌(soleus, SOL)单收缩与间断强直收缩功能的变化.结果显示,甲亢4周大鼠体重明显低于同步对照组[(292±13)g vs (354±10)g],但SOL湿重没有明显改变[(107.3±8.6)mg vs (115.1±6.9)mg].甲亢大鼠SOL单收缩张力达到峰值的时间(time to peak tension, TPT)、从峰值降至75%舒张时间(time from peak tension to 75% relaxation, TR75)均明显缩短;强直收缩的TR75也明显缩短[(102.8±4.1)ms vs (178.8±15.8)ms];强直收缩的最适频率从对照组的100Hz增加到140Hz;间断强直收缩期间容易发生疲劳.甲亢大鼠SOL肌浆网Ca2 -ATP酶(sarcoplasmic-reticulum Ca2 -ATPase, SERCA)活性增高.采用SERCA特异性抑制剂CPA (1.0μmol/L)处理后,对照组与甲亢大鼠SOL间断强直收缩的TR75均延长,同时不易出现疲劳.5.0μmol/L CPA灌流虽可进一步抵抗甲亢大鼠SOL间断强直收缩引起的疲劳,但强直收缩期间的静息张力却明显升高.将CPA浓度增至10.0μmol/L,甲亢大鼠SOL间断强直收缩又趋向易发生疲劳.这些结果提示,与心肌相同,骨骼肌肌纤维SERCA活性亦可影响单收缩与强直收缩的舒张时间,SERCA活性升高可加速间断强直收缩发生疲劳.  相似文献   

5.
The reduced release of Ca2+ from sarcoplasmic reticulum (SR) is considered a major determinant of muscle fatigue. In the present study, we investigated whether the presence of dantrolene, an established inhibitor of SR Ca2+ release, or caffeine, a drug facilitating SR Ca2+ release, modifies muscle fatigue development. Accordingly, the effects of Ca2+ release modulators were analyzed in vitro in mouse fast-twitch [extensor digitorum longus (EDL)] and slow-twitch (soleus) muscles, fatigued by repeated short tetani (40 Hz for 300 ms, 0.5 s(-1) in soleus and 60 Hz for 300 ms, 0.3 s(-1) in EDL, for 6 min). Caffeine produced a substantial increase of tetanic tension of both EDL and soleus muscles, whereas dantrolene decreased tetanic tension only in EDL muscle. In both EDL and soleus muscles, 5 microM dantrolene did not affect fatigue development, whereas 20 microM dantrolene produced a positive staircase during the first 3 min of stimulation in EDL muscle and a slowing of fatigue development in soleus muscle. The development of the positive staircase was abolished by the addition of 15 microM ML-7, a selective inhibitor of myosin light chain kinase. On the other hand, caffeine caused a larger and faster loss of tension in both EDL and soleus muscles. The results seem to indicate that the changes in fatigue profile induced by caffeine or dantrolene are mainly due to the changes in the initial tetanic tension caused by the drugs, with the resulting changes in the level of contraction-dependent factors of fatigue, rather than to changes in the SR Ca2+ release during fatigue development.  相似文献   

6.
Role of intracellular pH in muscle fatigue   总被引:3,自引:0,他引:3  
Intracellular pH of in vitro diaphragm preparations was determined following low- (5 Hz, 1.5 min) and high- (75 Hz, 1 min) frequency stimulation, using glass microelectrodes of the liquid membrane type (pHm). Results were compared with values obtained by the standard homogenate technique (pHh). High- and low-frequency stimulation reduced peak tetanic tension to 21 +/- 1 (SE) and 71 +/- 2% of initial values, respectively. Peak tetanic tension returned to resting values after 10- to 15-min recovery from high- or low-frequency stimulation. Resting pHm was 7.063 +/- 0.011 (n = 72), and after fatiguing stimulation declined to values as low as 6.33. During recovery pHm significantly increased and by 10 min had returned to prefatigue values. No difference was observed in the recovery of pHm between the low- and high-frequency stimulation groups (analysis of variance test, ANOVA), and in both groups pHm recovery was highly correlated to the recovery of peak tetanic tension (r = 0.94, P less than 0.001). Resting pHh was 7.219 +/- 0.023 (n = 13), which was significantly higher than the pHm value. In contrast to pHm, intracellular pHh was significantly higher during recovery from 75- vs. 5-Hz stimulation (P less than 0.05). For both groups pHh increased significantly with time and by 10 min returned to prestimulation values. The ANOVA test demonstrated that pHh values were significantly higher than pHm values during recovery from fatigue. The results from this study support our hypothesis that fatigue from both high- and low-frequency stimulation is at least partially due to the deleterious effects of intracellular acidosis on excitation-contraction coupling.  相似文献   

7.
We studied fatigue of rat diaphragm in response to repetitive brief and prolonged electrical stimulation of the phrenic nerve, at 0.2, 1-100 Hz. Low and high frequency of stimulation produced twitch and tetanic contractions in the rat diaphragm. A mean maximum twitch tension of 1.4 +/- 0.1 g was produced at 1 Hz, and a mean maximum tetanic tension of 5.6 +/- 0.3 g was obtained at 100 Hz (means +/- S.E., n = 8). Twitch and tetanic fatigue was produced at all frequencies of stimulations, but with different time scale, or duration, and with different number of stimuli delivered to the muscle. At low rates of stimulation, e.g. 10 Hz, fewer stimuli were needed to fatigue the muscle (3000 in 5 min), whereas at high rates of stimulation, e.g. 50 Hz, more stimuli were needed to fatigue the muscle (6600 in 2.2 min). The amplitude of the tetanic tensions elicited at 10 and 50 Hz, at the end of 5 or 2 min fatiguing stimulation, was 39 +/- 2.7% and 80 +/- 3.1% of their respective control tensions (2.8 +/- 0 2 g and 5.3 +/- 0.5 g, n = 8, P 0.001). It was concluded that fatigue in the rat diaphragm depended on the frequency and duration of stimulation as well as on the number of stimuli delivered to the muscle. Various mechanisms of muscle fatigue are described in the discussion to explain the observations made in the present investigation.  相似文献   

8.
The isometric and force-velocity properties of an identified and uniform population of fast-twitch, fatigue-resistant (FR) fibers within the flexor digitorum longus (FDL) muscle were investigated before, immediately after, and during recovery from a fatiguing repetitive isometric stimulus regime (40 Hz for 330 ms every s for 180 s) in the anesthetized cat. It was necessary to determine the smallest fraction of muscle that had the same force-velocity properties as the whole muscle. This was approximately 15% for FDL; if the fraction was less, the maximum speed of shortening was depressed and the a/Po value increased. Motor units were enlarged by partial denervation of the muscle, causing the intact motoneurons to sprout and incorporate more muscle fibers; FR units showed the greatest increase. Immediately after the fatigue regime, maximum isometric tetanic tension declined to 67% but subsequently recovered to 90% of the control value by the end of the 60-min recovery period. Maximum speed of shortening dropped to 71% of the control but after 30 min had recovered and did not differ significantly from control values. It is concluded that the capacity for recovery from fatigue is greater for FR units than for a whole muscle, which also contains fast-fatiguable units, and that the mechanisms involved in the recovery of the maximum isometric tension and maximum speed of shortening are independently regulated.  相似文献   

9.
Li H  Jiao B  Yu ZB 《生理学报》2007,59(3):369-374
为研究模拟失重大鼠萎缩比目鱼肌强直收缩疲劳后恢复速率的影响因素,采用尾部悬吊模拟失重大鼠模型及离体骨骼肌条灌流技术,观测其在不同收缩模式下疲劳后的恢复过程。正常大鼠离体比目鱼肌条实验显示,10s短时程(S10P)与300s长时程(L10P)强直收缩轻度疲劳[强直收缩最大张力(P0)下降10%]后,在20min恢复期末,均可恢复至疲劳前P0,且恢复程度不受疲劳持续时间的影响;轻度疲劳后,在灌流液中加入10μmol/L钌红抑制肌浆网Ca^2+释放功能,恢复速率减慢,恢复程度最大仅至94%P0,然后呈下降趋势,提示轻度疲劳可能仅抑制肌原纤维功能。60s短时程(S50P)与300s长时程(L50P)强直收缩中度疲劳(P0下降50%)后,在20min恢复期末,收缩张力分别恢复至95%P0和90%P0,表明中度疲劳持续时间影响恢复的速率;相同条件中度疲劳后,在灌流液中加入5mmol/L咖啡因促进肌浆网Ca62+释放功能,恢复速率明显加快,无论疲劳持续时间长短,5min便可完全恢复,提示中度疲劳不仅抑制肌原纤维功能,还抑制肌浆网Ca^2+释放功能。尾部悬吊1周的大鼠比目鱼肌明显萎缩,其重量/体重之比仅为对照大鼠的60%。采用短与长持续时间的轻与中度疲劳作用后,在20min恢复期末,收缩张力分别恢复至94%P0(S10P)、95%P0(L10P)、92%P0(S50P)、84%P0(L50P),均与同步对照组有显著差异。以上结果提示:模拟失重1周大鼠萎缩的比目鱼肌,轻度与中度疲劳均可抑制肌原纤维功能与肌浆网Ca^2+释放功能,使恢复速率减慢。  相似文献   

10.
In muscle phosphorylase deficiency (McArdle's disease) there is an abnormally rapid fatigue during strenuous exercise. Increasing substrate availability to working muscle can improve exercise tolerance but the effect on muscle energy metabolism has not been studied. Using phosphorus-31 nuclear magnetic resonance (31P-NMR) we examined forearm muscle ATP, phosphocreatine (PCr), inorganic phosphate (Pi) and pH in a McArdle patient (MP) and two healthy subjects (HS) at rest and during intermittent maximal effort handgrip contractions under control conditions (CC) and during intravenous glucose infusion (GI). Under CC, MP gripped to impending forearm muscle contracture in 130 s with a marked decline in muscle PCr and a dramatic elevation in Pi. During GI, MP exercised easily for greater than 420 s at higher tensions and with attenuated PCr depletion and Pi accumulation. In HS, muscle PCr and Pi changed more modestly and were not affected by GI. In MP and HS, ATP changed little or not at all with exercise. The results suggest that alterations in the levels of muscle PCr and Pi but not ATP are involved in the muscle fatigue in McArdle's disease and the improved exercise performance during glucose infusion.  相似文献   

11.
The isometric and force-velocity properties of the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles were investigated immediately after and during recovery from a fatiguing stimulus regime (40 Hz for 330 ms every second for 180 s) in the anesthetized cat. The amplitude of the isometric twitch of FDL was unaffected but in soleus it remained depressed for much of the recovery period. Immediately after stimulation the twitch time to peak of FDL increased to 140% of the control (prefatigue) value and then reverted to control values. The maximum isometric tetanic tension (Po) developed by FDL was reduced to 67% of control values immediately after the stimulus regime, whereas soleus declined to 93% of control. Recovery of maximum force development was achieved after 45 min in FDL and after 15 min in soleus. The maximum speed of shortening of FDL was reduced to 63% of control values immediately after fatigue; despite some recovery within the first 30 min, it remained depressed during the remainder of the recovery period (up to 300 min). Maximum speed of shortening was unaltered in soleus. The a/Po value transiently increased to 176% of control values in FDL immediately after the fatigue regime but promptly returned to control values. Force-velocity properties of soleus were not affected by the stimulus regime. It is concluded that in FDL changes in the maximum speed of shortening and maximum isometric tension as a result of the stimulus regime are attributable to changes in the intrinsic behavior of cross-bridges and the metabolic status of the fibers, particularly in the fast-twitch fatigue-resistant fibers.  相似文献   

12.
A possible role of extracellular Cl concentration ([Cl]o) in fatigue was investigated in isolated skeletal muscles of the mouse. When [Cl]o was lowered from 128 to 10 mM, peak tetanic force was unchanged, fade was exacerbated (wire stimulation electrodes), and a hump appeared during tetanic relaxation in both nonfatigued slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles. Low [Cl]o increased the rate of fatigue 1) with prolonged, continuous tetanic stimulation in soleus, 2) with repeated intermittent tetanic stimulation in soleus or EDL, and 3) to a greater extent with repeated tetanic stimulation when wire stimulation electrodes were used rather than plate stimulation electrodes in soleus. In nonfatigued soleus muscles, application of 9 mM K+ with low [Cl]o caused more rapid and greater tetanic force depression, along with greater depolarization, than was evident at normal [Cl]o. These effects of raised [K+]o and low [Cl]o were synergistic. From these data, we suggest that normal [Cl]o provides protection against fatigue involving high-intensity contractions in both fast- and slow-twitch mammalian muscle. This phenomenon possibly involves attenuation of the depolarization caused by stimulation- or exercise-induced run-down of the transsarcolemmal K+ gradient. potassium; skeletal muscle contraction; membrane potential; myotonia  相似文献   

13.
The effect of stimulus frequency on the rate of muscle fatigue has been studied on dorsiflexor muscles of the human ankle. It was found that significantly fewer stimuli were required to abolish twitch and tetanic torque when the stimuli were delivered at 15 Hz rather than 30 Hz. At both stimulus frequencies twitch torque disappeared before tetanic torque. The difference in numbers of stimuli required for fatigue was not due to impaired excitation of muscle fibers at either of the two frequencies. At both stimulating frequencies, twitch fatigue appeared to be due to a defect in excitation-contraction coupling and/or the contractile machinery.  相似文献   

14.
The activity and role of creatine kinase (CK) associated with contractile proteins of smooth muscle have been investigated using skinned guinea-pig taenia coli fibers. Total CK activity was 163 +/- 22 IU/g (ww) and agarose electrophoresis showed BB, MB, and MM isoforms (BB-CK being the predominant isoenzyme). After skinning for 1 h with Triton X-100, BB-CK was specifically associated with the myofibrils, representing 22% of the preskinned CK activity. When relaxed fibers were exposed to pCa 9 in the presence of 250 microM ADP, 0 ATP and 12 mM PCr, tension was not significantly different from resting tension, but changing to pCa 4.5 caused the fibers to generate 59.1 +/- 5.2 percent of maximal tension. When a high-tension rigor state was achieved (250 microM ADP, 0 ATP, 0 PCr, and pCa 9), the addition of 12 mM PCr effected significant relaxation. These observations implicate an endogenous form of BB-CK, associated with the myofilaments and capable of producing enough ATP for submaximal tension generation and significant relaxation from rigor conditions. It was also shown that ADP is bound to the myofibrils and available for rephosphorylation by BB-CK. These results suggest co-localization of ATPase, MLCK and CK on the contractile proteins of the taenia coli. This enzymic association may play a role in the compartmentation of adenine nucleotides in smooth muscle.  相似文献   

15.
Creatine kinase (CK) is a key enzyme for maintaining a constant ATP/ADP ratio during rapid energy turnover. To investigate the role of CK in skeletal muscle fatigue, we used isolated whole muscles and intact single fibers from CK-deficient mice (CK(-/-)). With high-intensity electrical stimulation, single fibers from CK(-/-) mice displayed a transient decrease in both tetanic free myoplasmic [Ca(2+)] ([Ca(2+)](i), measured with the fluorescent dye indo-1) and force that was not observed in wild-type fibers. With less intense, repeated tetanic stimulation single fibers and EDL muscles, both of which are fast-twitch, fatigued more slowly in CK(-/-) than in wild-type mice; on the other hand, the slow-twitch soleus muscle fatigued more rapidly in CK(-/-) mice. In single wild-type fibers, tetanic force decreased and [Ca(2+)](i) increased during the first 10 fatiguing tetani, but this was not observed in CK(-/-) fibers. Fatigue was not accompanied by phosphocreatine breakdown and accumulation of inorganic phosphate in CK(-/-) muscles. In conclusion, CK is important for avoiding fatigue at the onset of high-intensity stimulation. However, during more prolonged stimulation, CK may contribute to the fatigue process by increasing the myoplasmic concentration of inorganic phosphate.  相似文献   

16.
Twitch tension and phosphate incorporation into the phosphorylatable light chains (P-light chains) of myosin were studied during a 10-min recovery period following a 10- or 60-s maximal voluntary isometric contraction (MVC) in 18 subjects. Analysis of muscle biopsy samples obtained before, immediately after, 1 min, and 10 min following the 10-s MVC revealed that the 10-s MVC produced a modest but transient metabolic displacement from rest, a 35% decrease in phosphocreatine, and a threefold elevation in lactate concentration. Immediately after the 60-s MVC, ATP was decreased by 20%, phosphocreatine decreased by 84%, and lactate was elevated by 15-fold. Lactate remained elevated over the 10-min recovery period. Twitch force was maximally potentiated following the 10-s MVC and declined to rest by 10 min of recovery. Twitch force was 0.66 of rest value immediately after the 60-s MVC, then increased over the next 4 min to reach a potentiated value 21% greater than rest, before declining. Significant phosphate incorporation into P-light chains was observed immediately after both contractions, but dephosphorylation to rest values at the end of recovery was only noted for the 60-s condition. These results demonstrate an inconsistent relationship between twitch tension enhancement and P-light chain phosphorylation in the in vivo human model.  相似文献   

17.
Phase-modulated rotating-frame imaging (p.m.r.f.i.), a localization technique for 31P-n.m.r. spectroscopy, has been applied to obtain information on the heterogeneity of phosphorus-containing metabolites and pH in the skeletal muscle of control and streptozotocin-diabetic rats. Using this method, the metabolic changes in four spatially resolved longitudinal slices (where slice I is superficial and slice IV is deep muscle) through the ankle flexor muscles have been investigated at rest and during steady-state isometric twitch-contraction at 2 Hz. At rest, intracellular pH was lower, and phosphocreatine (PCr)/ATP was higher, throughout the muscle mass in diabetic compared with control animals. The change in PCr/ATP in diabetic muscle correlated with a decrease in the chemically determined ATP concentration. During the muscle stimulation period, the decrease in pH observed in diabetic muscle at rest was maintained, but not exacerbated, by the contractile stimulus. Stimulation of muscle contraction caused more marked changes in PCr/(PCr + Pi), PCr/ATP and Pi/ATP in the diabetic group. These changes were most evident in slice III, which contains the greatest proportion of fast glycolytic-oxidative (type IIa) fibres, in which statistically significant differences were observed for all metabolite ratios. The results presented suggest that some degree of heterogeneity occurs in diabetic skeletal muscle in vivo with respect to the extent of metabolic dysfunction caused by the diabetic insult and that regions of the muscle containing high proportions of type IIa fibres appear to be most severely affected.  相似文献   

18.
The role of reduced muscle pH in the development of skeletalmuscle fatigue is unclear. This study investigated the effects oflowering skeletal muscle intracellular pH by exposure to 30% CO2 on the number of isometrictetani needed to induce significant fatigue. Isolated single mousemuscle fibers were stimulated repetitively at intervals of 4-2.5 sby using 80-Hz, 400-ms tetani at 28°C in Tyrode solution bubbledwith either 5 or 30%CO2. Stimulation continued until tetanic force had fallen to 40% of the initial value.Exposure to 30% CO2 caused asignificant fall in intracellular pH of ~0.3 pH unit but did notcause any significant changes in initial peak tetanic force. During thecourse of repetitive stimulation, intracellular pH fell by ~0.3 pHunit in both normal and acidified fibers. The number of tetani neededto reduce force to 40% of the initial value was not significantlydifferent in 5 and 30% CO2Tyrode. The sole effect of acidosis was to reduce the rate ofrelaxation of force, especially in fatigued fibers. It is concluded that, at 28°C, acidosis per se does not accelerate the development of fatigue during repeated tetanic stimulation of isolated mouse skeletal muscle fibers.

  相似文献   

19.
Potential mechanisms of fatigue (metabolic factors) and potentiation (phosphate incorporation by myosin phosphorylatable light chains) were investigated during recovery from a 60-s maximal voluntary isometric contraction (MVC) in the quadriceps muscle of 12 subjects. On separate days before and for 2 h after the 60-s MVC, either a 1-s MVC or electrically stimulated contractions were used as indexes to test muscle performance. Torque at the end of the 60-s MVC was 57% of the initial level, whereas torques from a 1-s MVC and 50-Hz stimulation were most depressed in the immediate recovery period. At this time, muscle biopsy analyses revealed significant decreases in ATP and phosphocreatine and a 19-fold increase in muscle lactate. Conversely, isometric twitch torque and torque from a 10-Hz stimulus were the least depressed of six contractile indexes and demonstrated potentiation of 25 and 34%, respectively, by 4 min of recovery (P less than 0.05). At this time, muscle lactate concentration was still 16 times greater than at rest. An increased phosphate content of the myosin phosphorylatable light chains (P less than 0.05) was also evident both immediately and 4 min after the 60-s MVC. We conclude that the 60-s MVC produced marked force decreases likely due to metabolic displacement, while the limited decline in the twitch and 10-Hz torques and their significant potentiation suggested that myosin phosphorylation may provide a mechanism to enhance contractile force under conditions of submaximal activation during fatigue.  相似文献   

20.
Associations were quantified between the control force and fatigue-induced force decline in 22 single fast-twitch-fatigable motor units of 5 deeply anesthetized adult cats. The units were subjected to intermittent stimulation at 1 train/s for 360 s. Two stimulation patterns were delivered in a pseudo-random manner. The first was a 500-ms train with constant interpulse intervals. The second pattern had the same number of stimuli, mean stimulus rate, and stimulus duration, but the stimulus pulses were rearranged to increase the force produced by the units in the control (prefatigue) state. The associations among the control peak tetanic force of these units, 3 indices of fatigue, and total cumulative force during fatiguing contractions were dependent, in part, on the stimulation pattern used to produce fatigue. The associations were also dependent, albeit to a lesser extent, on the force measure (peak vs. integrated) and the fatigue index used to quantify fatigue. It is proposed that during high-force fatiguing contractions, neural mechanisms are potentially available to delay and reduce the fatigue of fast-twitch-fatigable units for brief, but functionally relevant, periods. In contrast, the fatigue of slow-twitch fatigue-resistant units seems more likely to be controlled largely, if not exclusively, by metabolic processes within their muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号