首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The sequestration of Ca2+ by mitochondria in rat heart cells   总被引:1,自引:0,他引:1  
P Kessar  M Crompton 《Cell calcium》1983,4(4):295-305
Rat heart ventricular cells, purified by Percoll density gradient centrifugation, were incubated in the presence of 1.3 mM CaCl2. After 20 min incubation, samples of the cells were lysed in medium containing 0.3 mM digitonin, ruthenium red and EGTA, and a mitochondrial fraction was isolated at intervals thereafter. Extrapolation of the mitochondrial 45Ca2+ contents to zero time enabled the endogenous 45Ca2+ to be estimated at the time of cell lysis. The lysis conditions yielded essentially complete release of lactate dehydrogenase from the cells, but caused negligible damage to the mitochondria as judged by their retention of glutamate dehydrogenase, and their ability to accumulate and retain Ca2+ in the absence of ruthenium red and EGTA. The data indicate that about 13% of total cell Ca2+ only may be mitochondrial in vivo.  相似文献   

2.
The oxidation of exogenously added substrates has been studied in intact liver mitochondria isolated from the American eel, Anguilla rostrata. These data, coupled to determinations of the activity and localization of critical tricarboxylic acid (TCA) cycle enzymes, have been used to propose a pathway for the eel liver TCA cycle. (1) Isocitric, α-ketoglutaric, succinic, and malic acids are oxidized at essentially equivalent rates by eel mitochondria, with normal ADP:O and respiratory control ratios. No oxidation of citric, oxaloacetic, or pyruvic acids was detected when added alone or with malate, although oxaloacetic acid + pyruvic acid was oxidized but at a much reduced rate. (2) Radioactively labeled isocitrate was incorporated into at least α-ketoglutaric, succinic, and malic acids, indicating the eel liver TCA cycle is normal between isocitrate and malate. (3) No activity of the NAD-linked isocitrate dehydrogenase (IDH) could be detected, but NADP-IDH activities were higher in the mitochondria than cytosolic fractions. An active NADPH:NAD transhydrogenase was localized to the mitochondrial compartment. (4) These data suggest an important role for the NADP-IDH:transhydrogenase enzyme couple in eel liver TCA cycle function, and a pathway incorporating these ideas is proposed.  相似文献   

3.
4.
The positron-emitting, non-steroidal estrogen (2R*, 3S*)-1-[18F]fluoro-2,3-bis(4-hydroxyphenyl)pentane [( 18F]-fluoronor-hexestrol), has been prepared by fluoride ion displacement on a labile trifluoromethanesulfonate (triflate) derivative of a suitably protected precursor, followed by removal of the aryl triflate groups with lithium aluminum hydride and purification by HPLC. In immature female rats, this compound is taken up selectively by the uterus and is retained for prolonged periods, due to its binding to the estrogen receptor. This compound and related 18F-labeled estrogens thus appear to be promising agents for imaging estrogen receptor-positive breast tumors in humans.  相似文献   

5.
6.
Comparative intracellular distribution of Ca2+, Mg2+ and adenine nucleotides has been studied in pig heart by differential centrifugation or fractional extraction and has shown that Mg2+ and ATP are associated mainly with soluble fractions whereas Ca2+ and ADP are more tightly bound to subcellular structures. Ca2+ accumulation and Ca2+ stimulated respiration were studied in pig heart mitochondria under different energetic conditions in the absence or presence of phosphate. Ca2+ concentrations of about 1200 nmoles/mg protein inhibit Ca2+ accumulation, site I substrate oxidation and induce an efflux of mitochondrial Mg2+. These deleterious effects of Ca2+ on respiration occur even in the absence of phosphate or oxidizable substrate; they are completely prevented by ruthenium red only, and partially prevented by the addition of M2+ to the medium. The kinetics of Ca2+ uptake become of the sigmoidal type when Mg2+ is present. This cation strongly inhibits the rate of Ca2+ uptake in the presence of added phosphate and decreases the affinity of Ca2+ for its transport system. In the absence of phosphate, Mg2+ has no effect on Ca2+ uptake. The possible physiological implications of these findings are discussed  相似文献   

7.
A rapid loss of accumulated Ca2+ is produced by addition of H+ to isolated heart mitochondria. The H+-dependent Ca+ efflux requires that either (a) the NAD(P)H pool of the mitochondrion be oxidized, or (b) the endogenous adenine nucleotides be depleted. The loss of Ca2+ is accompanied by swelling and loss of endogenous Mg2–. The rate of H+-dependent Ca2+ efflux depends on the amount of Ca2+ and Pi taken up and the extent of the pH drop imposed. In the absence of ruthenium red the H+-induced Ca2+-efflux is partially offset by a spontaneous re-accumulation of released Ca2+. The H+-induced Ca2+ efflux is inhibited when the Pi transporter is blocked withN-ethylmaleimide, is strongly opposed by oligomycin and exogenous adenine nucleotides (particularly ADP), and inhibited by nupercaine. The H+-dependent Ca2+ efflux is decreased markedly when Na+ replaces the K+ of the suspending medium or when the exogenous K+/H+ exchanger nigericin is present. These results suggest that the H+-dependent loss of accumulated Ca2+ results from relatively nonspecific changes in membrane permeability and is not a reflection of a Ca2+/H+ exchange reaction.  相似文献   

8.
The effects of several short-chain mercapto acids on the rate of respiration supported by either palmitoylcarnitine, octanoate, or pyruvate was studied with coupled rat heart mitochondria. 3-Mercaptopropionic acid was found to be a potent inhibitor of respiration sustained by palmitoylcarnitine or octanoate, whereas under identical conditions respiration with pyruvate as a substrate was unaffected. 2-Mercaptoacetic acid also inhibits palmitoylcarnitine-supported respiration, but only at much higher concentrations of the inhibitor. 2-Mercaptopropionic acid has virtually no effect. Incubation of mitochondria with 3-mercaptopropionic acid did not cause the irreversible inactivation of any beta-oxidation enzyme. Since 3-mercaptopropionic acid did not inhibit beta-oxidation in uncoupled mitochondria, it appears that this compound must first be metabolized in an energy-dependent reaction before it becomes inhibitory. 3-Mercaptopropionyl-CoA and three of its S-acyl derivatives, all of which are likely mitochondrial metabolites of 3-mercaptopropionic acid, were tested for their capacity to inhibit the individual enzymes of beta-oxidation. 3-Mercaptopropionyl-CoA inhibits only acyl-CoA dehydrogenase, whereas S-myristoyl-3-mercaptopropionyl-CoA inhibits reversibly several beta-oxidation enzymes. All observations together lead us to suggest that the inhibition of beta-oxidation by 3-mercaptopropionic acid in coupled rat heart mitochondria is most likely a consequence of the reversible inhibition of acyl-CoA dehydrogenase by long-chain S-acyl-3-mercaptopropionyl-CoA thioesters and possibly by 3-mercaptopropionyl-CoA.  相似文献   

9.
The ATP-supported Ca2+ uptake of heart and liver mitochondria preincubated in conditions in which electron transport had either been prevented by rotenone or antimycin, or induced by oxidizable substrates, has been studied. Mitochondria preincubated with respiratory inhibitors accumulate Ca2+ less efficiently than mitochondria preincubated with oxidizable substrates. The difference correlates with the degree of activation of the oligomycin-sensitive ATPase. The results indicate that the rate at which mitochondria take up Ca2+ in the ATP-supported system may be controlled by the reversible asociation of the inhibiting peptide (Pullman,. and Monroy, J. Biol. Chem., 238, 3762–3769) with the ATPase complex. Since this process appears to be modulated by the transmembrane electrochemical gradient, the latter may regulate the uptake of Ca2+ in a hitherto undescribed way.  相似文献   

10.
11.
12.
Previous studies showed that Ca2+ induced monomer to active dimer interconversion of a mitochondrial ATPase inhibitor protein from bovine heart or rat skeletal muscle (Yamada, E.W., Huzel, N.J. and Dickison, J.C. (1981) J. Biol. Chem. 256, 10203–10207). Initial equilibrium dialysis measurements of Ca2+ binding showed that this unique protein possesses three binding sites of high affinity with a maximum of one mol of Ca2+ bound/mol of protein monomer. Magnesium (1 mM) did not affect the first association constant but increased the second and third by about 1.2 and 1.5 fold, respectively. That the apparent association constants varied with concentration of protein monomer was in agreement with the self-associating nature of the protein. Scatchard plots at three concentrations of protein intersected at a molar ratio of about 0.5 (Ca2+monomer). Ka1 and Ka2 values of 4.2 μM and 12.1 μM, respectively, were estimated by extrapolation of apparent constants to infinite dilution of protein. Ka3 (51.3 μM) was estimated by extrapolation of double reciprocal plots of apparent constants versus protein concentration to infinite levels of protein. A model for Ca2+ binding by this self-associating protein is described. Trifluoperazine had no effect on the activity of the inhibitor protein from either tissue.  相似文献   

13.
Some aspects of the interaction of the extrinsic, potential-sensitive, molecular probe diS-C3-(5) with pigeon heart mitochondria are reported in this paper. Binding studies based on fluorimetry indicate that the ratio of the dissociation constant to the maximum number of binding sites, KD/n, is larger for succinate-containing mitochondria than that for cyanide-inhibited preparations. These observations suggest that the basis of the energy-dependent diS-C3-(5) optical signals is the ejection of the probe from the mitochondrial membrane. A more detailed analysis indicated that the major change in the binding parameters is a reduction in the maximum number of binding sites, n, when a charge gradient is formed at the expense of substrate. Using rapid mixing techniques, the time course of the passive association of diS-C3-(5) with mitochondria, that of the glutamate- and ATP-dependent optical signals, and the effect of this probe on the rate at which the energy-dependent cytochrome c oxidase Soret band shift signal develops have been monitored. Retardation the ATP-dependent cytochrome c oxidase Soret band shift signal suggests that the probe readily permeates the mitochondrial membrane. The first-order rate law that the glutamate-dependent signal obeys suggests that the rate-limiting step in the development of this signal is the dissociation of the dye from the mitochondrial membrane or the permeation of this membrane by the probe. The faster phase of the ATP-induced signal likely reflects the initial transfer of dye from the bulk aqueous phase followed by a slower probe permeation process that obeys a first-order rate law. This probe appears to distribute across the mitochondrial membrane in accordance with the transmembrane potential as judged by its effect on the ATP-dependent cytochrome c oxidase Soret band shift signal. DiS-C3-(5) also appears to inhibit the NADH dehydrogenase.  相似文献   

14.
Mitochondria isolated from the late-exponential non-shaken culture of the ciliate protozoan Tetrahymena pyriformis GL was investigated. The presence of energy-dependent Ca2+ transport system was shown. In the main the properties of this system have been essentially the same as in mitochondria of vertebrate organisms. The isolated mitochondria contained 23±5 ng-ion Ca2+ per mg of protein. The intramitochondrial free concentration of Ca2+ was measured in the presence of uncoupler FCCP with the use of fluorescent Ca2+ chelator chlortetracycline and null point titration method. In the absence of phosphate, free [Ca2+] varied from 1 to 2.5 mM depending on the internal Ca2+ content. In the presence of 2 mM phosphate, free [Ca2+]in has not exceeded 0.1–0.3 mM. It was shown that ruthenium red and Mg2+ in different manner have an inhibitory effect on Ca2+ transport. Besides this, Mg2+ also has a stabilizing effect on mitochondria, possibly, by preventing passive ions leaks across the membrane.  相似文献   

15.
J W Lee  G A Vidaver 《Cell calcium》1984,5(6):501-524
Cells were subjected to a range of 45Ca2+ influx loads with A23187. We measured cell 45Ca2+ with time and A23187 dose, and the apparent 45Ca2+ influxes (identical to "J(in,app)") at Ca2+ steady state. We also measured endogeneous exchangeable and total cell Ca2+, which were 50 and 17-220 microM respectively. The effects of A23187 and Ca2+ on cell ATP, swelling, net Cl- permeability, and cell morphology were measured. These were modest and do not affect our conclusions. J(in,app) congruent to 3 X 10(-4) [A23187]2.9 X [Ca2+(o)]mumoles/l X min with 92-552 microM [Ca2+(o)] (identical to external Ca2+ concentration) and 0-7 microM A23187. J(in,app) was increased an order of magnitude by vanadate and is probably much less than the true influx. The least unlikely explanation found for the high [A23187] exponent, 2.9, was that most of the Ca2+ crossing the membrane is expelled by the pump before it can move deeper into the cell. Calcium pumping increased rapidly in response to increased influx, but the steady state cell 45Ca2+ was approximately proportional to J(in,app) rather than approximately constant between 10 and 120 mumoles/l X min with 184 microM [Ca2+(o)]. This is not the result expected from a simple feedback mechanism. At high A23187 doses the pump appears fully activated resulting in a linear relation between cell/medium 45Ca2+ and [A23187]-2. From the plot we calculated alpha identical to free/total exchangeable Ca2+ = 0.38 +/- 0.08 (n = 3) and a maximum pump rate, "Pmax" = 78 mumole/l X min. Pmax is underestimated insofar as J(in,app) is less than the true influx.  相似文献   

16.
We show that tetraphenylphosphonium inhibits oxidation of palmitoylcarnitine, pyruvate, malate, 2-oxoglutarate and glutamate in heart mitochondria in the range of concentration (1–5 µM) commonly used for the determination of mitochondrial membrane potential. The inhibition of 2-oxoglutarate (but not other substrate) oxidation by tetraphenylphosphonium is dependent on the concentration of 2-oxoglutarate and on extramitochondrial free calcium, and the kinetic plots are consistent with a mixed type of inhibition. Our results indicate that tetraphenylphosphonium interacts with enzymes, specifically involved in the oxidation of 2-oxoglutarate, most possibly, 2-oxoglutarate dehydrogenase.  相似文献   

17.
The differential scanning microcalorimetry and fluorescence methods, using probes ANS and pyrene, have been employed to study thermotropic behaviour of rat liver microsomes in the presence and absence of Mg2+. Addition of Mg2+ yields three partially reversible phase transitions at 18, 27 and 32 degrees C, respectively. A character of Mg2+-induced rearrangements in a membrane and their relation to a catalytic function of a cytochrome P-450-dependent enzymatic system is discussed.  相似文献   

18.
Nuclear magnetic resonance methods have been developed for assignment of the absolute configuration of (4,4,4-d3)-β-hydroxyisovalerate and (2-d1)-β-hydroxyisovalerate. (E) and (Z)-(4,4,4-d3)-β-methylcrotonate and (2-d)-β-methylcrotonate have been administered to biotin-deficient rats, and the resultant β-hydroxyisovalerate was isolated from their urine. The NMR spectra of derivatives of the biosynthetic products established that the hydration of β-methylcrotonate had proceeded nonstereospecifically.  相似文献   

19.
Polycystin-1 (PC1) is a membrane protein expressed in tubular epithelia of developing kidneys and in other ductal structures. Recent studies indicate this protein to be putatively important in regulating intracellular Ca(2+) levels in various cell types, but little evidence exists for kidney epithelial cells. Here we examined the role of the PC1 cytoplasmic tail on the activity of store operated Ca(2+) channels in human kidney epithelial HEK-293 cell line. Cells were transiently transfected with chimeric proteins containing 1-226 or 26-226 aa of the PC1 cytoplasmic tail fused to the transmembrane domain of the human Trk-A receptor: TrkPC1 wild-type and control Trk truncated peptides were expressed at comparable levels and localized at the plasma membrane. Ca(2+) measurements were performed in cells co-transfected with PC1 chimeras and the cytoplasmic Ca(2+)-sensitive photoprotein aequorin, upon activation of the phosphoinositide pathway by ATP, that, via purinoceptors, is coupled to the release of Ca(2+) from intracellular stores. The expression of TrkPC1 peptide, but not of its truncated form, enhanced the ATP-evoked cytosolic Ca(2+) concentrations. When Ca(2+) assays were performed in HeLa cells characterized by Ca(2+) stores greater than those of HEK-293 cells, the histamine-evoked cytosolic Ca(2+) increase was enhanced by TrkPC1 expression, even in absence of external Ca(2+). These observations indicate that the C-terminal tail of PC1 in kidney and other epithelial cells upregulates a Ca(2+) channel activity also involved in the release of intracellular stores.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号