首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amino acid deprivation triggers dramatic physiological responses in all organisms, altering both the synthesis and destruction of RNA and protein. Here we describe, using the ciliate Tetrahymena thermophila, a previously unidentified response to amino acid deprivation in which mature transfer RNA (tRNA) is cleaved in the anticodon loop. We observed that anticodon loop cleavage affects a small fraction of most or all tRNA sequences. Accumulation of cleaved tRNA is temporally coordinated with the morphological and metabolic changes of adaptation to starvation. The starvation-induced endonucleolytic cleavage activity targets tRNAs that have undergone maturation by 5' and 3' end processing and base modification. Curiously, the majority of cleaved tRNAs lack the 3' terminal CCA nucleotides required for aminoacylation. Starvation-induced tRNA cleavage is inhibited in the presence of essential amino acids, independent of the persistence of other starvation-induced responses. Our findings suggest that anticodon loop cleavage may reduce the accumulation of uncharged tRNAs as part of a specific response induced by amino acid starvation.  相似文献   

2.
Extragenic suppressors of +1 frameshift mutations in proline codons map in genes encoding two major proline tRNA isoacceptors. We have shown previously that one isoacceptor encoded by the SUF2 gene (chromosome 3) contains no intervening sequence. SUF2 suppressor mutations result from the base insertion of a G within a 3'-GGA-5' anticodon, allowing the tRNA to read a 4-base code word. In this communication we describe suppressor mutations in genes encoding a second proline tRNA isoacceptor (wild-type anticodon 3'-GGU-5') that result in a novel mechanism for translation of a 4-base genetic code word. The genes that encode this isoacceptor include SUF7 (chromosome 13), SUF8 (chromosome 8), trn1 (chromosome 1), and at least two additional unmapped genes, all of which contain an intervening sequence. We show that suppressor mutations in the SUF7 and SUF8 genes result in G-to-U base substitutions at position 39 that disrupted the normal G . C base pairing in the last base pair of the anticodon stem adjacent to the anticodon loop. These anticodon stem mutations might alter the size of the anticodon loop and permit the use of a 3'-GGGU-5' sequence within the loop to read 4-base proline codons. Uncertainty regarding the exact structure of the mature suppressor tRNAs results from the possibility that anticodon stem mutations might affect sites of intervening sequence removal. The possible role of the intervening sequence in the generation of mature suppressor tRNA is discussed. Besides an analysis of suppressor tRNA genes, we have extended previous observations of the apparent relationship between tRNA genes and repetitive delta sequences found as solo elements or in association with the transposable element TY1. Hybridization studies and a computer analysis of the DNA sequence surrounding the SUF7 gene revealed two incomplete, inverted delta sequences that form a stem and loop structure located 165 base pairs from the 5' end of the tRNA gene. In addition, sequences beginning 164 base pairs from the 5' end of the trn1 gene also exhibit partial homology to delta. These observations provide further evidence for a nonrandom association between tRNA genes and delta sequences.  相似文献   

3.
The three consecutive G:C base pairs, G29:C41, G30:C40, and G31:C39, are conserved in the anticodon stem of virtually all initiator tRNAs from eubacteria, eukaryotes, and archaebacteria. We show that these G:C base pairs are important for function of the tRNA in initiation of protein synthesis in vivo. We changed these base pairs individually and in combinations and analyzed the activities of the mutant Escherichia coli initiator tRNAs in initiation in vivo. For assessment of activity of the mutant tRNAs in vivo, mutations in the G:C base pairs were coupled to mutation in the anticodon sequence from CAU to CUA. Mutations in each of the G:C base pairs reduced activity of the mutant tRNA in initiation, with mutation in the second G:C base pair having the most severe effect. The greatly reduced activity of this C30:G40 mutant tRNA is not due to defects in aminoacylation or formulation of the tRNA or defects in base modification of the A37, next to the anticodon, which we had previously shown to be important for activity of the mutant tRNAs in initiation. The anticodon stem mutants are most likely affected specifically at the step of binding to the ribosomal P site. The pattern of cleavages in the anticodon loop of mutant tRNAs by S1 nuclease indicate that the G:C base pairs may be involved directly in interactions of the tRNA with components of the P site on the ribosome rather than indirectly by inducing a particular conformation of the anticodon loop critical for function of the tRNA in initiation.  相似文献   

4.
The anticodon of yeast tRNA(Asp), GUC, presents the peculiarity to be self-complementary, with a slight mismatch at the uridine position. In the orthorhombic crystal lattice, tRNA(Asp) molecules are associated by anticodon-anticodon interactions through a two-fold symmetry axis. The anticodon triplets of symmetrically related molecules are base paired and stacked in a normal helical conformation. A stacking interaction between the anticodon loops of two two-fold related tRNA molecules also exists in the orthorhombic form of yeast tRNA(Phe). In that case however the GAA anticodon cannot be base paired. Two characteristic differences can be correlated with the anticodon-anticodon association: the distribution of temperature factors as determined from the X-ray crystallographic refinements and the interaction between T and D loops. In tRNA(Asp) T and D loops present higher temperature factors than the anticodon loop, in marked contrast to the situation in tRNA(Phe). This variation is a consequence of the anticodon-anticodon base pairing which rigidifies the anticodon loop and stem. A transfer of flexibility to the corner of the tRNA molecule disrupts the G19-C56 tertiary interactions. Chemical mapping of the N3 position of cytosine 56 and analysis of self-splitting patterns of tRNA(Asp) substantiate such a correlation.  相似文献   

5.
One of the requirements for engineering expansion of the genetic code is a unique codon which is available for specifying the new amino acid. The potential of the quadruplet UAGA in Escherichia coli to specify a single amino acid residue in the presence of a mutant tRNA(Leu) molecule containing the extra nucleotide, U, at position 33.5 of its anticodon loop has been examined. With this mRNA-tRNA combination and at least partial inactivation of release factor 1, the UAGA quadruplet specifies a leucine residue with an efficiency of 13 to 26 %. The decoding properties of tRNA(Leu) with U at position 33.5 of its eight-membered anticodon loop, and a counterpart with A at position 33.5, strongly suggest that in both cases their anticodon loop bases stack in alternative conformations. The identity of the codon immediately 5' of the UAGA quadruplet influences the efficiency of quadruplet translation via the properties of its cognate tRNA. When there is the potential for the anticodon of this tRNA to dissociate from pairing with its codon and to re-pair to mRNA at a nearby 3' closely matched codon, the efficiency of quadruplet translation at UAGA is reduced. Evidence is presented which suggests that when there is a purine base at position 32 of this 5' flanking tRNA, it influences decoding of the UAGA quadruplet.  相似文献   

6.
Rodin SN  Rodin AS 《Heredity》2008,100(4):341-355
If the table of the genetic code is rearranged to put complementary codons face-to-face, it becomes apparent that the code displays latent mirror symmetry with respect to two sterically different modes of tRNA recognition. These modes involve distinct classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the acceptor stem, respectively. We analyze the anticodon pairs complementary to the face-to-face codon couplets. Taking into account the invariant nucleotides on either side (5' and 3'), we consider the risk of anticodon confusion and subsequent erroneous aminoacylation in the ancestral coding system. This logic leads to the conclusion that ribozymic precursors of tRNA synthetases had the same two complementary modes of tRNA aminoacylation. This surprising case of molecular mimicry (1) shows a key potential selective advantage arising from the partitioning of aaRSs into two classes, (2) is consistent with the hypothesis that the two aaRS classes were originally encoded by the complementary strands of the same primordial gene and (3) provides a 'missing link' between the classic genetic code, embodied in the anticodon, and the second, or RNA operational, code that is embodied mostly in the acceptor stem and is directly responsible for proper tRNA aminoacylation.  相似文献   

7.
The origin of the protein synthesis mechanism   总被引:1,自引:0,他引:1  
The origin and development of the protein synthesis mechanism is considered in four successive steps. The genetic code is supposed to be controlled by the relative amount (availability) of various amino acids and nucleotides on the one hand, and utility on each amino acid in the polypeptide. on the other hand. Thus, more simple (inutile) and abundant amino acids tended to correspond to codons which were rich in the less frequent base species, G and C. Features of primitive tRNA in the discrimination of amino acid are discussed. Primitive tRNA is proposed to have a discriminator site for amino acid and, separated from it, an anticodon site for interaction with nucleotides. A hypothetical course of subdivision of various nucleic acid species is proposed. In the scheme, mRNA and ribosomal RNA (rRNA) were derived from more primitive insoluble RNA. DNA appeared in the late, not first, step of the development. Several other aspects of evolutionary development of the whole protein synthesis mechanism, e.g., role of the discriminator site on primitive tRNA, modification and subdivision of code catalogue into a more precise specification of amino acids, and possible primordial interactions between tRNA and tRNA-binding sites on insoluble rRNA, are discussed.  相似文献   

8.
The aminoacylation of tRNAs by the aminoacyl-tRNA synthetases recapitulates the genetic code by dictating the association between amino acids and tRNA anticodons. The sequences of tRNAs were analyzed to investigate the nature of primordial recognition systems and to make inferences about the evolution of tRNA gene sequences and the evolution of the genetic code. Evidence is presented that primordial synthetases recognized acceptor stem nucleotides prior to the establishment of the three major phylogenetic lineages. However, acceptor stem sequences probably did not achieve a level of sequence diversity sufficient to faithfully specify the anticodon assignments of all 20 amino acids. This putative bottleneck in the evolution of the genetic code may have been alleviated by the advent of anticodon recognition. A phylogenetic analysis of tRNA gene sequences from the deep Archaea revealed groups that are united by sequence motifs which are located within a region of the tRNA that is involved in determining its tertiary structure. An association between the third anticodon nucleotide (N36) and these sequence motifs suggests that a tRNA-like structure existed close to the time that amino acid-anticodon assignments were being established. The sequence analysis also revealed that tRNA genes may evolve by anticodon mutations that recruit tRNAs from one isoaccepting group to another. Thus tRNA gene evolution may not always be monophyletic with respect to each isoaccepting group.Based on a presentation made at a workshop— Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: M.E. Saks  相似文献   

9.
We have used the temperature-jump relaxation technique to determine the kinetic and thermodynamic parameters for the association between the following tRNAs pairs having complementary anticodons: tRNA(Ser) with tRNA(Gly), tRNA(Cys) with tRNA(Ala) and tRNA(Trp) with tRNA(Pro). The anticodon sequence of E. coli tRNA(Ser), GGA, is complementary to the U*CC anticodon of E. coli tRNA(Gly(2] (where U* is a still unknown modified uridine base) and A37 is not modified in none of these two tRNAs. E. coli tRNA(Ala) has a VGC anticodon (V is 5-oxyacetic acid uridine) while tRNA(Cys) has the complementary GCA anticodon with a modified adenine on the 3' side, namely 2-methylthio N6-isopentenyl adenine (mS2i6A37) in E. Coli tRNA(Cys) and N6-isopentenyl adenine (i6A37) in yeast tRNA(Cys). The brewer yeast tRNA(Trp) (anticodon CmCA) differs from the wild type E. coli tRNA(Trp) (anticodon CCA) in several positions of the nucleotide sequence. Nevertheless, in the anticodon loop, only two interesting differences are present: A37 is not modified while C34 at the first anticodon position is modified into a ribose 2'-O methyl derivative (Cm). The corresponding complementary tRNA is E.coli tRNA(Pro) with the VGG anticodon. Our results indicate a dominant effect of the nature and sequence of the anticodon bases and their nearest neighbor in the anticodon loop (particularly at position 37 on the 3' side); no detectable influence of modifications in the other tRNA stems has been detected. We found a strong stabilizing effect of the methylthio group on i6A37 as compared to isopentenyl modification of the same residue. We have not been able so far to assess the effect of isopentenyl modification alone in comparison to unmodified A37. The results obtained with the complex yeast tRNA(Trp)-E.coli tRNA(Pro) also suggest that a modification of C34 to Cm34 does not significantly increase the stability of tRNA(Trp) association with its complementary anticodon in tRNA(Pro). The observations are discussed in the light of inter- and intra-strand stacking interactions among the anticodon triplets and with the purine base adjacent to them, and of possible biological implications.  相似文献   

10.
Lysidine (2-lysyl cytidine) is a lysine-containing cytidine derivative commonly found at the wobble position of bacterial AUA codon-specific tRNA(Ile). This modification determines both codon and amino acid specificities of tRNA(Ile). We previously identified tRNA(Ile)-lysidine synthetase (tilS) that synthesizes lysidine, for which it utilizes ATP and lysine as substrates. Here, we show that lysidine synthesis consists of two consecutive reactions that involve an adenylated tRNA intermediate. A mutation study revealed that Escherichia coli TilS discriminates tRNA(Ile) from the structurally similar tRNA(Met) having the same anticodon loop by recognizing the anticodon loop, the anticodon stem, and the acceptor stem. TilS was shown to bind to the anticodon region and 3' side of the acceptor stem, which cover the recognition sites. These findings reveal a dedicated mechanism embedded in tRNA(Ile) that controls its recognition and discrimination by TilS, and indicate the significance of this enzyme in the proper deciphering of genetic information.  相似文献   

11.
Transfer RNA (tRNA) structure, modifications and functions are evolutionary and established in bacteria, archaea and eukaryotes. Typically the tRNA modifications are indispensable for its stability and are required for decoding the mRNA into amino acids for protein synthesis. A conserved methylation has been located on the anticodon loop specifically at the 37th position and it is next to the anticodon bases. This modification is called as m1G37 and it is catalyzed by tRNA (m1G37) methyltransferase (TrmD). It is deciphered that G37 positions occur on few additional amino acids specific tRNA subsets in bacteria. Furthermore, Archaea and Eukaryotes have more number of tRNA subsets which contains G37 position next to the anticodon and the G residue are located at different positions such as G36, G37, G38, 39, and G40. In eight bacterial species, G (guanosine) residues are presents at the 37th and 38th position except three tRNA subsets having G residues at 36th and 39th positions. Therefore we propose that m1G37 modification may be feasible at 36th, 37th, 38th, 39th and 40th positions next to the anticodon of tRNAs. Collectively, methylation at G residues close to the anticodon may be possible at different positions and without restriction of anticodon 3rd base A, C, U or G.  相似文献   

12.
The principles of mRNA decoding are conserved among all extant life forms. We present an integrative view of all the interaction networks between mRNA, tRNA and rRNA: the intrinsic stability of codon–anticodon duplex, the conformation of the anticodon hairpin, the presence of modified nucleotides, the occurrence of non-Watson–Crick pairs in the codon–anticodon helix and the interactions with bases of rRNA at the A-site decoding site. We derive a more information-rich, alternative representation of the genetic code, that is circular with an unsymmetrical distribution of codons leading to a clear segregation between GC-rich 4-codon boxes and AU-rich 2:2-codon and 3:1-codon boxes. All tRNA sequence variations can be visualized, within an internal structural and energy framework, for each organism, and each anticodon of the sense codons. The multiplicity and complexity of nucleotide modifications at positions 34 and 37 of the anticodon loop segregate meaningfully, and correlate well with the necessity to stabilize AU-rich codon–anticodon pairs and to avoid miscoding in split codon boxes. The evolution and expansion of the genetic code is viewed as being originally based on GC content with progressive introduction of A/U together with tRNA modifications. The representation we present should help the engineering of the genetic code to include non-natural amino acids.  相似文献   

13.
Breaking the degeneracy of the genetic code via sense codon reassignment has emerged as a way to incorporate multiple copies of multiple non-canonical amino acids into a protein of interest. Here, we report the modification of a normally orthogonal tRNA by a host enzyme and show that this adventitious modification has a direct impact on the activity of the orthogonal tRNA in translation. We observed nearly equal decoding of both histidine codons, CAU and CAC, by an engineered orthogonal M. jannaschii tRNA with an AUG anticodon: tRNAOpt. We suspected a modification of the tRNAOptAUG anticodon was responsible for the anomalous lack of codon discrimination and demonstrate that adenosine 34 of tRNAOptAUG is converted to inosine. We identified tRNAOptAUG anticodon loop variants that increase reassignment of the histidine CAU codon, decrease incorporation in response to the histidine CAC codon, and improve cell health and growth profiles. Recognizing tRNA modification as both a potential pitfall and avenue of directed alteration will be important as the field of genetic code engineering continues to infiltrate the genetic codes of diverse organisms.  相似文献   

14.
Mutant tRNAs containing an extra nucleotide in the anticodon loop are known to suppress +1 frameshift mutations, but in no case has the molecular mechanism been clarified. It has been proposed that the expanded anticodon pairs with a complementary mRNA sequence (the frameshift sequence) in the A site, and this quadruplet "codon-anticodon" helix is translocated to the P site to restore the correct reading frame. Here, we analyze the ability of tRNA analogs containing expanded anticodons to recognize and position mRNA in ribosomal complexes in vitro. In all cases tested, 8 nt anticodon loops position the 3' three-quarters of the frameshift sequence in the P site, indicating that the 5' bases of the expanded anticodon (nucleotides 33.5, 34, and 35) pair with mRNA in the P site. We also provide evidence that four base-pairs can form between the P-site tRNA and mRNA, and the fourth base-pair involves nucleotide 36 of the tRNA and lies toward (or in) the 30 S E site. In the A site, tRNA analogs with the expanded anticodon ACCG are able to recognize either CGG or GGU. These data imply a flexibility of the expanded anticodon in the A site. Recognition of the 5' three-quarters of the frameshift sequence in the A site and subsequent translocation of the expanded anticodon to the P site results in movement of mRNA by four nucleotides, explaining how these tRNAs can change the mRNA register in the ribosome to restore the correct reading frame.  相似文献   

15.
tRNA anticodon damage inflicted by the Kluyveromyces lactis γ-toxin underlies an RNA-based innate immune system that distinguishes self from nonself species. γ-toxin arrests the growth of Saccharomyces cerevisiae by incising a single phosphodiester 3' of the wobble base of tRNA(Glu(UUC)) to generate a break with 2',3'-cyclic phosphate and 5'-OH ends. Recombinant γ-toxin cleaves oligonucleotide substrates in vitro that mimic the anticodon stem-loop of tRNA(Glu). A single 2'-deoxy sugar substitution at the wobble nucleoside abolishes anticodon nuclease activity. To gain further insights to γ-toxin's substrate specificity, we tested deoxynucleoside effects at positions other than the site of transesterification. The results attest to a stringent requirement for a ribonucleoside at the uridine 5' of the wobble base. In contrast, every other nonwobble ribonucleoside in the anticodon loop can be replaced by a deoxy without significantly affecting γ-toxin's cleavage activity. Whereas either the 5' half or the 3' half of the anticodon stem can be replaced en bloc with DNA without a major effect, simultaneously replacing both strands with DNA interfered strongly, signifying that γ-toxin requires an A-form helical conformation of the anticodon stem. We purified γ-toxin mutants identified previously as nontoxic in vivo and gauged their anticodon nuclease activities in vitro. The results highlight Glu9 and Arg151 as candidate catalytic residues, along with His209 implicated previously. By analogy to other endoribonucleases, we speculate that γ-toxin drives transesterification by general acid-base catalysis (via His209 and Glu9) and transition-state stabilization (via Arg151).  相似文献   

16.
A new approach to the origin of the genetic code is proposed based on some regularities in the nucleotide distribution pattern of the code. The relative amounts of various amino acids in primitive proteins were possibly different from those in organisms living today. The primordial ratio was supposed to shift to the modern one guided by the action of primitive nucleotides. Each primitive tRNA had a discriminator site and, distinguished from it, an anticodon site. It also postulated that primordially each amino acid could correspond to a wide variety of codons. During the course of the evolutionary change, a selective mechanism worked among the protobionts so that less frequent nucleotides became associated with more abundant amino acids in the primordial conditions,thus finally leading to the present codon catalogue.  相似文献   

17.
The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease cleaves its natural substrate 5' to the wobble base, yielding 2',3'-cyclic phosphate termini. Previous work has implicated the anticodon of tRNA(Lys) as a specificity element and a cluster of amino acid residues at the carboxy-proximal half of PrrC in its recognition. We further examined these assumptions by assaying unmodified and hypomodified derivatives of tRNA(Lys) as substrates of wild-type and mutant alleles of PrrC. The data show, first, that the anticodon sequence and wobble base modifications of tRNA(Lys) play major roles in the interaction with anticodon nuclease. Secondly, a specific contact between the substrate recognition site of PrrC and the tRNA(Lys) wobble base is revealed by PrrC missense mutations that suppress the inhibitory effects of wobble base modification mutations. Thirdly, the data distinguish between the anticodon recognition mechanisms of PrrC and lysyl-tRNA synthetase.  相似文献   

18.
19.
A new approach to the origin of the genetic code is proposed based on some regularities in the nucleotide distribution pattern of the code. The relative amounts of various amino acids in primitive proteins were possibly different from those in organisms living today. The primordial ratio was supposed to shift to the modern one guided by the action of primitive nucleotides. Each primitive tRNA had a discriminator site and, distinguished from it, an anticodon site. It is also postulated that primordially each amino acid could correspond to a wide variety of codons. During the course of the evolutionary change, a selective mechanism worked among the protobionts so that less frequent nucleotides became associated with more abundant amino acids in the primordial conditions, thus finally leading to the present codon catalogue.Presented at The International Seminar: The Origin of Life held in Moscow, August 2–7, 1974.  相似文献   

20.
K Nagano  H Takagi  M Harel 《Biochimie》1991,73(7-8):947-960
Lim and Spirin [25] proposed a preferable conformation of the nascent peptide during the ribosomal transpeptidation. Spirin and Lim [26] excluded the possibilities of the side-by-side model proposed by Johnson et al [13] and the three-tRNA binding model (A, P and E sites) of Rheinberger and Nierhaus [3]. However, a slight conformational change at the 3' end regions of both A and P site tRNA molecules can enable the three different tRNA binding models to converge. With a modification of the angles of the ribose rings of both anticodon and mRNA this model can also be related to the model of Sundaralingam et al [19]. In this model of E coli rRNA the 3' end sequence ACCA76 or GCCA76 of P site tRNA is base-paired to UGGU810 of 23S rRNA, while the ACC75 or GCC75 of A site tRNA are base-paired to GGU1621 23S rRNA. The conformation of the A76 of A site tRNA is necessarily different from that of P site tRNA, at least during the course of the transpeptidation. The A76 of A site tRNA overlaps the binding region of puromycin. The C1400 of 16S rRNA in this model is located at a distance of 4 A from the 5' end of the anticodon of P site tRNA [14] and 17 A from the 5' end of the anticodon of A site tRNA [15]. It is also shown that a considerable but reasonable modification in the conformation of the anticodon loops could lead to accommodation of three deacylated tRNA(Phe) molecules at a time on 70S ribosome in the presence of poly(U) as observed experimentally [6]. A sterochemical explanation for the negatively-linked allosteric interactions between the A and E sites is also shown in the present model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号