首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dihydroxy[3-14C]acetone phosphate was prepared enzymatically from [1-14C]glucose and used as a substrate in a partially purified quinolinate synthetase system prepared from Escherichia coli mutants. Carbon-by-carbon degradation of the resulting [14C]quinolinate showed that 96% of the 14C was located in carbon-4, indicating that carbon-3 of dihydroxyacetone phosphate condenses with carbon-3 of aspartate in quinolinate synthesis in E. coli.  相似文献   

2.
Evidence for the formation of an unstable intermediate in the synthesis of quinolinate from aspartate and dihydroxyacetone phosphate by Escherichia coli was obtained using toluenized cells of nadA and nadB mutants of this organism and partially purified A and B proteins in dialysis and membrane cone experiments. The results of these experiments indicate that the nadB gene product forms an unstable compound from aspartate in the presence of flavine adenine dinucleotide, and that this compound is then condensed with dihydroxyacetone phosphate to form quinolinate in a reaction catalyzed by the nadA gene product.  相似文献   

3.
1. Fat-free homogenates from the epididymal fat-pads of rats were used to measure the rate of palmitate esterification with different substrates. The effectiveness of the acyl acceptors decreased in the order glycerol phosphate, dihydroxyacetone phosphate, 2-octadecenyl-glycerol and 2-hexadecylglycerol. 2. Glycerol phosphate and dihydroxyacetone phosphate inhibited their rates of esterification in a mutually competitive manner. 3. The esterification of glycerol phosphate was also inhibited in a partially competitive manner by 2-octadecenylglycerol and to a lesser extent by 2-hexadecylglycerol. However, glycerol phosphate did not inhibit the esterification of 2-octadecenylglycerol. 4. The esterification of dihydroxyacetone phosphate and 2-hexadecylglycerol was more sensitive to inhibition by clofenapate than was that of glycerol phosphate. Norfenfluramine was more effective in inhibiting the esterification of 2-hexadecylglycerol than that of glycerol phosphate or dihydroxyacetone phosphate. 5 It is concluded that rat adipose tissue can synthesize glycerolipids by three independent routes.  相似文献   

4.
The lacY from Escherichia coli strains 020 and AE43 have been cloned on plasmids which were designated p020-K358T and pAE43-D237N. These lacY mutants contain amino acid substitutions changing Lys-358 to Thr or Asp-237 to Asn, respectively. The charge neutralizing effect of each mutation is associated with a functional defect in melibiose transport which we exploited in order to isolate second site revertants to the melibiose-positive phenotype. Eleven melibiose-positive revertants of p020-K358T were isolated. All contained a second-site mutation converting Asp-237 to a neutral amino acid (8 to Asn, 1 to Gly, and 2 to Tyr). Twelve melibiose-positive revertants of pAE43-D237N were isolated. Two were second-site revertants converting Lys-358 to a neutrally Gln residue, while the remainder directly reverted Asn-237 to the wild-type Asp-237. We conclude that the functional intimate relationship between Asp-237 and Lys-358 suggests that these residues may be closely juxtaposed in three-dimensional space, possibly forming a 'charge-neutralizing' salt bridge.  相似文献   

5.
Fatty acid synthesis in Escherichia coli   总被引:3,自引:3,他引:3       下载免费PDF全文
1. Fatty acid formation by cells of a strain of Escherichia coli has been studied in the exponential, post-exponential and stationary phases of growth. 2. During the exponential phase of growth, the metabolic quotient (mmumoles of fatty acid synthesized/mg. dry wt. of cells/hr.) for each fatty acid in the extractable lipid was constant. 3. The newly synthesized fatty acid mixtures produced during this phase contained hexadecanoic acid (41%), hexadecenoic acid (31%), octadecenoic acid (21%) and the C(17)-cyclopropane acid, methylenehexadecanoic acid (4%). 4. As the proportion of newly synthesized material increased, changes in the fatty acid composition of the cells during this period were towards this constant composition. 5. Abrupt changes in fatty acid synthesis occurred when exponential growth ceased. 6. In media in which glycerol, or SO(4) (2-) or Mg(2+), was growth-limiting there was a small accumulation of C(17)-cyclopropane acid in cells growing in the post-exponential phase of growth. 7. Where either NH(4) (+) or PO(4) (3-) was growth-limiting and there were adequate supplies of glycerol, Mg(2+) and SO(4) (2-), there was a marked accumulation of C(17)-cyclopropane acid and C(19)-cyclopropane acid appeared. 8. Under appropriate conditions the metabolic quotient for C(17)-cyclopropane acid increased up to sevenfold at the end of exponential growth. Simultaneously the metabolic quotients of the other acids fell. 9. A mixture of glycerol, Mg(2+) and SO(4) (2-) stimulated cyclopropane acid formation in resting cells.  相似文献   

6.
Phosphatidic acid synthesis in Escherichia coli   总被引:6,自引:4,他引:6       下载免费PDF全文
The kinetic properties of acyl-coenzyme A (CoA): l-alpha-glycerol-phosphate trans-acylase (EC 2.3.1.15) from Escherichia coli were studied. At 10 C, a temperature at which the reaction was proportional to time and enzyme concentration, the enzyme had an apparent K(m) of 60 mum for l-alpha-glycerol-phosphate. The curve describing the velocity of the reaction as a function of palmitoyl-CoA concentration was sigmoid but the plot of v(-1) versus [S](-3) gave a straight line. A K(m) of about 11 mum was calculated for palmitoyl-CoA. Adenosine triphosphate specifically inhibited the reaction, being a noncompetitive inhibitor in respect to l-alpha-glycerol phosphate. Inhibition only occurred with high concentrations of palmitoyl-CoA, and maximal inhibition was 60%.  相似文献   

7.
8.
9.
The two genes, nadA and nadB, responsible for quinolinate biosynthesis from aspartate and dihydroxyacetone phosphate in Escherichia coli were cloned and characterized. Quinolinate (pyridine-2,3-dicarboxylate) is the biosynthetic precursor of the pyridine ring of NAD. Gene nadA was identified by complementation in three different nadA mutant strains. Sequence analysis provided an 840-bp open reading frame coding for a 31,555-Da protein. Gene nadB was identified by complementation in a nadB mutant strain and by the L-aspartate oxidase activity of its gene product. Sequence analysis showed a 1620-bp open reading frame coding for a 60,306-Da protein. For both genes, promoter regions and ribosomal binding sites were assigned by comparison to consensus sequences. The nadB gene product, L-aspartate oxidase, was purified to homogeneity and the N-terminal sequence of 19 amino acids was determined. The enzyme was shown to be specific for L-aspartate. High-copy-number vectors, carrying either gene nadA, nadB or nadA + nadB, increased quinolinate production 1.5-fold, 2.0-fold and 15-fold respectively. Both gene products seem to be equally rate-limiting in quinolinate synthesis.  相似文献   

10.
Bacterial alkaline phosphatase catalyzes the hydrolysis and transphosphorylation of phosphate monoesters. Site-directed mutagenesis was used to change the active-site residue Asp-153 to Ala and Asn. In the wild-type enzyme Asp-153 forms a second-sphere complex with Mg2+. The activity of mutant enzymes D153N and D153A is dependent on the inclusion of Mg2+ in the assay buffer. The steady-state kinetic parameters of the D153N mutant display small enhancements, relative to wild type, in buffers containing 10 mM Mg2+. In contrast, the D153A mutation gives rise to a 6.3-fold increase in kcat, a 13.7-fold increase in kcat/Km (50 mM Tris, pH 8), and a 159-fold increase in Ki for Pi (1 M Tris, pH 8). In addition, the activity of D153A increases 25-fold as the pH is increased from 7 to 9. D153A hydrolyzes substrates with widely differing pKa's of their phenolic leaving groups (PNPP and DNPP), at similar rates. As with wild type, the rate-determining step takes place after the initial nucleophilic displacement (k2). The increase in kcat for the D153A mutant indicates that the rate of release of phosphate from the enzyme product complex (k4) has been enhanced.  相似文献   

11.
Quinolinate synthetase catalyzes the second step of the de novo biosynthetic pathway of pyridine nucleotide formation. In particular, quinolinate synthetase is involved in the condensation of dihydroxyacetone phosphate and iminoaspartate to form quinolinic acid. To study the mechanism of action, the specificity of the enzyme and the interaction with l-aspartate oxidase, the other component of the so-called "quinolinate synthetase complex," the cloning, the overexpression, and the purification to homogeneity of Escherichia coli quinolinate synthetase were undertaken. The results are presented in this paper. Since the overexpression of the enzyme resulted in the formation of inclusion bodies, a procedure of renaturation and refolding had to be set up. The overexpression and purification procedure reported in this paper allowed the isolation of 12 mg of electrophoretically homogeneous quinolinate synthetase from 1 liter of E. coli culture. A new, continuous, method for the evaluation of quinolinate synthetase activity was also devised and is presented. Finally, our data definitely exclude the possibility that other enzymes are involved in the biosynthesis of quinolinic acid in E. coli, since it is possible to synthesize quinolinic acid from l-aspartate, dihydroxyacetone phosphate, and O(2) by using only nadA and nadB gene overexpressed products.  相似文献   

12.
De novo biosynthesis of pyridine nucleotide coenzymes in Escherichia coli is initiated by an enzyme complex (quinolinate synthetase) containing protein B which converts -aspartate into iminoaspartate protein A, which then generates quinolinate on the pathway to the coenzymes. This complex has been shown to be poisoned by hyperbaric oxygen. 7,8 We performed assays made dependent on both proteins B and A versus only protein A, using cell-free extracts of hyperbaric-oxygen poisoned and aerobically grown cells. The specific activities were produced by a similar amounts of 68% and 60%, respectively, when measured in assays made dependent on enzymes B and A versus only protein A that was derived from oxygen-poisoned extract. Thus, protein A is the oxygen-sensitive component.  相似文献   

13.
A study was made of the kinetics of labelling of the stable ribonucleic acids (rRNA+tRNA) and the unstable mRNA fraction in cultures of Escherichia coli M.R.E.600, inhibited by the addition of 0.1g of rifampicin/l. Labelling was carried out by adding either [2-14C]- or [5-3H]-uracil as an exogenous precursor of the cellular nucleic acids. From studies using DNA RNA hybridization, the kinetics of the synthesis and degradation of mRNA was followed in the inhibited cultures. Although a considerable proportion of the mRNA labelled in the presence of rifampicin decayed to non-hybridizable products, about 25% was stabilized beyond the point where protein synthesis had finally ceased. It therefore seems unwise to extrapolate the results of studies on mRNA stability in rifampicin-inhibited cultures to the situation existing in the rate of steady growth, where there appears to be little, if any, stable messenger. The kinetics of labelling of RNA in inhibited cultures indicated that the clapsed time from the addition of rifampicin to the point at which radioactivity no longer enters the total cellular ribonucleic acids is a measure of the time required to polymerize a molecule of rRNA. At 37°C, in culture grown in broth, glucose–salts or lactate salts media, exogenous [2-14C]uracil entered rifampicin-inhibited cells and was incorporated into RNA for 2 3min after the antibiotic was added. Taking this time as that required to polymerize a complete chain of 23S rRNA, the polymerization rate of this fraction in the three media was 25, 22 and 19 nucleotides added/s to the growing chains. Similar experiments in cultures previously inhibited by 0.2g of chloramphenicol/l showed virtually identical behaviour. This confirmed the work of Midgley & Gray (1971), who, by a different approach, showed that the polymerization rate of rRNA in steadily growing and chloramphenicol-inhibited cultures of E. coli at 37°C was essentially constant at about 22 nucleotides added/s. It was thus confirmed that the rate of polymerization of at least the rRNA fraction in E. coli is virtually unaffected by the nature of the growth medium and therefore by bacterial growth rate.  相似文献   

14.
The rate of polymerization of ribosomal ribonucleic acid chains was estimated for steadily growing cultures of Escherichia coli M.R.E.600, from the kinetics of incorporation of exogenous [5-3H]uracil into completed 23S rRNA molecules. The analytical method of Avery & Midgley (1971) was used. Measurements were made at 37°C, in the presence or the absence of chloramphenicol, in each of three media; enriched broth, glucose–salts or sodium lactate–salts. The rate of chain elongation of 23S rRNA was virtually constant in all media at 37°C, as 24±4 nucleotides added/s. Accelerations in the rate of biosynthesis of rRNA by chloramphenicol in growth-limiting media are due primarily to an increase in the rate of initiation of new RNA chains, up to the rates existing in cultures growing rapidly in broth. Thus, in poorer media, only a small fraction of the available DNA-dependent RNA polymerase molecules are active at any given instant, since the chain-initiation rate is limiting in these conditions. In cultures growing rapidly in enriched broth, antibiotic inhibition caused a rise of some 12% in the rate of incorporation of exogenous uracil into total RNA. This small acceleration was due entirely to the partial stabilization of the mRNA fraction, which accumulated as 14% of the RNA formed after the addition of chloramphenicol. In cultures growing more slowly in glucose–salts or lactate–salts media, chloramphenicol caused an immediate acceleration of two- to three-fold in the overall rate of RNA synthesis. Studies by DNA–RNA hybridization showed that the synthesis of mRNA was accelerated in harmony with the other affected species. However, just over half the mRNA formed after the addition of chloramphenicol quickly decayed to acid-soluble products, whereas the remainder was more stable and accumulated in the cells. The mRNA fraction constituted about 6% of the total cellular RNA after 3h inhibition. A model was suggested to explain the partial stabilization and accumulation of the mRNA fraction and the acceleration in the rate of synthesis of mRNA when chloramphenicol was added to cultures in growth-limiting media.  相似文献   

15.
The phosphate pool of Escherichia coli was determined as a fraction of the total cell phosphate. This relative pool size was found to be essentially independent of cell age.  相似文献   

16.
17.
18.
At 20 microM, rac-3,4-dihydroxybutyl-1-phosphonate (DBP) has only a slight bacteriostatic effect on Escherichia coli. However, cells lose viability when the medium also contains either 20 mM magnesium or calcium ions. Magnesium ions stimulate the incorporation of DBP into (1,2-diacyl)-sn-glycerol-D-4'-phosphoryloxy-3'-hydroxybutyl-1'-pho sphonate, the phosphonate analog of phosphatidylglycerol phosphate. Much higher DBP concentrations are needed to block the growth of a pgsA3 mutant than to block the growth of an isogenic wild-type strain. The DBP-treated pgsA mutant also has a much higher survival rate when stored in the cold than does the DBP-treated wild-type strain. Furthermore, the pgsA3 mutant grows normally in the presence of DBP and magnesium ions. Treatment with DBP and magnesium ions does not appear to disrupt the cell's inner or outer membranes. However, it does block macromolecular and phosphoglyceride synthesis. A combination of 20 microM rac-DBP and 0.5 mM spermidine or 0.125 mM spermine is bacteriostatic. These studies indicate that the PGP analog contributes to DBP's bacteriostatic effect when the growth medium contains low concentrations of magnesium or calcium ions and is responsible for its bactericidal effect when the medium contains high concentrations of these ions.  相似文献   

19.
Summary InRhizobium lupini bacterioids enzymes catalysing biosynthesis of aspartic acid have been found. The first enzyme termed aspartate dehydrogenase catalyses synthesis of aspartate from oxaloacetic acid and ammonia in the presence of NADH. The second enzyme, aspartase (L-aspartate ammonialyase, EC 4.3.1.1.), catalyses synthesis of aspartate from fumaric acid and ammonia. These data show that ammonia can be assimilated not only in the plant part of nodules but also in bacteroids. Biosynthesis of aspartate plays a very important role in the assimilation of ammonia in nodules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号