首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The characteristics of [3H]strychnine and t-[35S]-butylbicyclophosphorothionate ([35S]TBPS) binding to sites associated with glycine- and gamma-aminobutyric acid (GABA)-gated chloride channels were compared in the presence of a series of anions with known permeabilities through these channels. Good correlations were found between (a) the potencies (EC50) of these anions to stimulate radioligand binding and their permeabilities relative to chloride; (b) the affinities (KD) of these radioligands in the presence of fixed concentrations of these anions and their relative permeabilities; (c) the potencies (EC50) of these anions to stimulate [35S]TBPS and [3H]strychnine binding; and (d) the affinities (KD) of [3H]strychnine and [35S]TBPS measured at a fixed concentration of these anions. These studies support electrophysiological and biochemical observations demonstrating similarities between glycine- and GABA-gated chloride channels, and suggest that anions enhance [3H]strychnine and [35S]TBPS binding through specific anion binding sites located at the channels.  相似文献   

2.
The effect of early undernutrition and dietary rehabilitation on [3H]gamma-aminobutyric acid ([3H]GABA) binding in rat brain cerebral cortex and hippocampus was examined. Undernourished animals were obtained by exposing their mothers to a protein-deficient diet during both gestation and lactation. Saturation analysis of [3H]GABA binding in the cerebral cortex and hippocampus revealed high- and low-affinity components in the undernourished group, whereas control animals possessed only a low-affinity site. The concentration of low-affinity binding sites was greater in the undernourished animals. Rehabilitation of undernourished animals completely abolished the binding site differences. Treatment of brain membranes with Triton X-100 yielded two binding components in both the undernourished and control animals, although the concentration of lower affinity sites was still greater in the undernourished group. Neither the efficacy nor the potency of GABA to activate benzodiazepine binding in cerebral cortex was modified by undernutrition. These data suggest that early undernourishment modifies the characteristics of [3H]GABA binding, perhaps by reducing the brain content of endogenous inhibitors of the higher affinity binding site. The lack of effect on GABA-activated benzodiazepine binding suggests the possibility that neither the high- nor the low-affinity GABA binding sites are coupled to this receptor component.  相似文献   

3.
The effects of gamma-aminobutyric acid (GABA) on the release of [3H]acetylcholine ([3H]ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with [3H]choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized [3H]ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of [3H]ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of [3H]ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of [3H]ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of [3H]ACh following penetration into cholinergic nerve terminals through a GABA transport system.  相似文献   

4.
t-[35S]Butylbicyclophosphorothionate Binding Sites in Invertebrate Tissues   总被引:1,自引:0,他引:1  
Specific high affinity binding of the cage convulsant t-[35S]butylbicyclophosphorothionate (TBPS) was observed in membrane homogenates of housefly heads and crayfish abdominal muscles. [35S]TBPS binding in these two invertebrate tissues was inhibited by biologically active cage convulsants, picrotoxin analogs, and barbiturates. The housefly binding sites were inhibited most potently by several insecticides. Approximately 50% of total binding was displaceable by excess (0.1 mM) nonradioactive TBPS, picrotoxinin, ethyl bicyclophosphate, or dieldrin. Optimal binding assay conditions for housefly homogenates included pH 7.5, 22 degrees C temperature, 0.3 M chloride concentration, and incubation for 60 min; for crayfish homogenates, 4 degrees C temperature and 150-min incubations were optimal. Scatchard plots of equilibrium binding indicated one site in both tissues (KD = 50 nM, Bmax = 250 fmol/mg protein in housefly; KD = 25 nM, Bmax = 100 fmol/mg protein in crayfish). Association kinetics in housefly were consistent with one rate constant (k+1 = 8 X 10(6) M-1 min-1), but dissociation was described better by two rate constants (k-1 = 0.28 min-1 and 0.042 min-1; calculated KD values of 80 nM and 12 nM). Displacement by cage convulsants showed Hill numbers near 0.5, also consistent with two populations of affinity, while displacement by other drugs showed Hill numbers near 1.0. [35S]TBPS binding in insects was most potently inhibited by the insecticides dieldrin (IC50 = 50 nM), aldrin, and lindane (200 nM), in a stereospecific manner, consistent with this binding site being the receptor for biological toxicity. [35S]TBPS binding was also inhibited by relatively high concentrations of some pyrethroid insecticides, such as deltamethrin and cypermethrin (1-2 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Significant differences were demonstrated between the long-sleep (LS) and short-sleep (SS) selected mouse lines in the abilities of barbiturates and gamma-aminobutyric acid (GABA) to inhibit t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) binding to well-washed cerebral cortical membranes. Thus, using phenobarbital to initiate the dissociation of [35S]TBPS, the extent of inhibition was significantly greater in LS mice (but not SS mice) than would be predicted using equilibrium conditions. Pentobarbital had the opposite effect, causing [35S]TBPS to dissociate to a greater extent in SS than LS membranes. [35S]TBPS binding was dissociated from LS and SS membranes by GABA to a greater and lesser extent, respectively, than would be predicted from equilibrium studies. Because no line differences in the potencies of these drugs to inhibit [35S]TBPS binding were found using equilibrium conditions, these results indicate that the association rates of barbiturates and GABA may be different between these lines. These findings are consistent with neurochemical studies indicating differences in the benzodiazepine/GABA receptor-chloride channel complex in these selected lines and may explain their differential sensitivities to certain agents acting through this supramolecular complex.  相似文献   

6.
Abstract: The binding of [3H]bicuculline methochloride (BMC) to mammalian brain membranes was characterized and compared with that of [3H]γ-aminobutyric acid ([3H]GABA). The radiolabeled GABA receptor antagonist showed significant displaceable binding in Tris-citrate buffer that was improved by high concentrations of chloride, iodide, or thiocyanate, reaching >50% displacement in the presence of 0.1 M SCN?. An apparent single class of binding sites for [3H]BMC (KD= 30 nM) was observed in 0.1 M SCN? for fresh or frozen rat cortex or several regions of frozen and thawed bovine brain. The Bmax was about 2 pmol bound/mg of crude mitochondrial plus microsomal membranes from unfrozen washed and osmotically shocked rat cortex, similar to that for [3H]GABA. Frozen membranes, however, showed decreased levels of [3H]BMC binding with no decrease or an actual increase in [3H]GABA binding sites. [3H]BMC binding was inhibited by GABA receptor specific ligands, but showed a higher affinity for antagonists and lower affinity for agonists than did [3H]GABA binding. Kinetics experiments with [3H]GABA binding revealed that low- and high-affinity sites showed a similar pharmacological specificity for a series of GABA receptor ligands, but that whereas all agonists had a higher affinity for slowly dissociating high-affinity [3H]GABA sites, bicuculline had a higher affinity for rapidly dissociating low-affinity [3H]GABA sites. This reverse potency between agonists and antagonists during assay of radioactive antagonists or agonists supports the existence of agonist- and antagonist-preferring conformational states or subpopulations of GABA receptors. The differential affinities, as well as opposite effects on agonist and antagonist binding by anions, membrane freezing, and other treatments, suggest that [3H]BMC may relatively selectively label low-affinity GABA receptor agonist sites. This study, using a new commercially available preparation of [3H]bicuculline methochloride, confirms the report of bicuculline methiodide binding by Mohler and Okada (1978), and suggests that this radioactive GABA antagonist will be a valuable probe in analyzing various aspects of GABA receptors.  相似文献   

7.
The mechanism by which ethanol affects the gamma-aminobutyric acid (GABA)/benzodiazepine complex is not clear. It is known that ethanol enhances the Cl- influx mediated by the GABAA receptor complex, and although chronic ethanol administration does not change the KD or Bmax for [3H]flunitrazepam binding, some reports have suggested that it could modify the modulation of benzodiazepine binding produced by GABA. In the present work, we studied the effect of chronic ethanol treatment on the modulation by GABA of [3H]flunitrazepam binding, using light microscopic autoradiography. This technique allows the measurement of densities of benzodiazepine receptors in different brain areas, the visual cortex and hippocampus, which appear to constitute the anatomical support for the behavioral and physiological responses affected by ethanol. We found enhancement of benzodiazepine binding by GABA at concentrations of greater than 10(-6) M for the various cortical and hippocampal areas studied from both control and ethanol-treated animals; this enhancement peaked at 10(-4) M GABA but decreased at 10(-3) M GABA. We found a clear effect of ethanol treatment on the modulatory properties of GABAA receptor, in both cortex and hippocampus, although only in cortex were the differences statistically significant between control and ethanol-treated animals.  相似文献   

8.
The role of t-butylbicyclophosphorothionate (TBPS) as an antagonist of gamma-aminobutyric acid (GABA) was studied with primary cultures of neurons from the chick embryo cerebrum. The addition of GABA stimulated the uptake of 36Cl- by neurons and the dose dependence of this effect followed hyperbolic kinetics with a K0.5 = 1.3 microM for GABA. TBPS proved to be a potent inhibitor of GABA-dependent Cl- uptake (IC50 = 0.30 microM). Analysis of the kinetics of this process revealed that TBPS is a noncompetitive inhibitor (Ki = 0.15 microM) with respect to GABA. Scatchard analysis of direct binding of [35S]TBPS to membranes isolated from neuronal cultures gave curvilinear plots. These could be resolved by nonlinear regression methods into two components with KD values of 3.1 nM and 270 nM. The TBPS binding constant for this lower affinity site agreed well with the IC50 and Ki values for inhibition of Cl- flux, suggesting that this site is physiologically relevant to GABA antagonism. GABA was a noncompetitive displacer of [35S]TBPS binding to the lower affinity site. The Ki value for this displacement by GABA (1.7 microM) was comparable to the value for GABA enhancement of Cl- flux. The binding of [35S]TBPS to its low-affinity site on neuronal membranes was ninefold higher in the presence of Cl- than with gluconate, an impermeant anion. The rank order for anion stimulation of [35S]TBPS binding was Br- greater than or equal to SCN- greater than Cl- greater than or equal to NO3- greater than I- greater than F- greater than gluconate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Abstract: [3H]Diazepam and [3H]flunitrazepam ([3H]FNP) binding to washed and frozen synaptosomal membranes from rat cerebral cortex were compared. In Tris-citrate buffer, γ -aminobutyric acid (GABA) and NaCl both increased [3H]diazepam binding more than [3H]FNP binding. GABA and pentobarbital both enhanced this effect of NaCl. Because of the extremely rapid dissociation of [3H]diazepam in the absence of NaCl and GABA, the Bmax (maximal binding capacity) was smaller by the filtration assay than by the centrifugation assay. [3H]FNP, which dissociates more slowly, had the same Bmax in both assays. [3H]Diazepam association had two components, and was faster than [3H]FNP association. [3H]Diazepam dissociation, which also had two components, was faster than that of [3H]FNP, and also had a greater fraction of rapidly dissociating species. [3H]FNP dissociation was similar when initiated by diazepam, flunitrazepam, clonazepam, or Ro15-1788, which is a benzodiazepine antagonist. [3H]Diazepam dissociation with Ro15-1788, flunitrazepam, or clonazepam was slower than with diazepam. GABA and NaCl, but not pentobarbital, increased the percentage of slowly dissociating species. This effect of NaCl was potentiated by GABA and pentobarbital. The results support the cyclic model of benzodiazepine receptors existing in two interconvertible conformations, and suggest that, distinct from their binding affinity, some ligands (like flunitrazepam) are better than others (like diazepam) in inducing the conversion of the receptor to the higher-affinity state.  相似文献   

10.
The effects of gamma-aminobutyric acid (GABA) on the spontaneous efflux of [3H]norepinephrine ([3H]NE) were studied in synaptosomes prepared from rat hippocampus and prelabelled with [3H]NE. It had been observed previously that, when synaptosomes were exposed in superfusion to GABA, the basal release of the tritiated catecholamine was enhanced, apparently with no involvement of the known GABA receptors. The mechanisms underlying this effect have now been investigated. The potency of GABA as a releaser of [3H]NE was decreased by lowering the Na+ content of the superfusion medium, and its effect disappeared at 23 mM Na+. The GABA-induced [3H]NE release was counteracted by the GABA uptake inhibitor N-(4,4-diphenyl-3-butenyl)nipecotic acid (SKF 89976A), but it was unaffected by the NE uptake blockers desmethylimipramine and nisoxetine. The GABA-induced release of [3H]NE was Ca2+-dependent and tetrodotoxin-sensitive. The data support the hypothesis that GABA provoked [3H]NE release by a novel mechanism which involves penetration into the noradrenergic nerve terminals through a GABA carrier located on the NE terminals themselves. This uptake process might be electrogenic and provoke depolarization of the nerve terminals, causing an exocytotic release of [3H]NE.  相似文献   

11.
Inhalation anesthetics, such as diethyl ether, halothane, and enflurane, increase 36Cl- uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent, picrotoxin-sensitive fashion. At concentrations consistent with those that stimulate 36Cl- uptake, inhalation anesthetics also inhibit the binding of t-[35S]butylbicyclophosphorothionate ([35S]TBPS) to well-washed cortical membranes. Scatchard analysis of [35S]TBPS binding indicates that these agents reduce the apparent affinity of this radioligand and have little effect on the Bmax. The ability of inhalation anesthetics to directly stimulate 36Cl- uptake and inhibit [35S]TBPS binding is a property shared by nonvolatile anesthetics. Nonetheless, there are differences between nonvolatile agents (such as barbiturates and alcohols) and inhalation anesthetics, because the former compounds augment muscimol (a GABAmimetic) stimulated 36Cl- uptake, whereas the latter group (such as ether and enflurane) inhibit this effect. These findings demonstrate that therapeutically relevant concentrations of inhalation anesthetics perturb the benzodiazepine/gamma-aminobutyric acid receptor chloride channel complex, and suggest this oligomeric protein may be a common mediator of some aspects of anesthetic action.  相似文献   

12.
Effects of diazepam and gamma-aminobutyric acid-related compounds on the release of [14C]cysteine sulfinate and [3H]glutamate from preloaded hippocampal slices of rat brain were examined by a superfusion method. Diazepam markedly inhibited the release of cysteine sulfinate and glutamate evoked either by high K+ or veratridine without affecting that of other neurotransmitter candidates, e.g., gamma-aminobutyric acid, acetylcholine, noradrenaline, and dopamine; IC50 values for the release of cysteine sulfinate and glutamate were about 20 and 7 microM, respectively. gamma-Aminobutyric acid (1 to 10 microM) and muscimol (100 microM) significantly reduced high K+-stimulated release of glutamate. Bicuculline, which had no effect on the release at a concentration of 50 microM by itself, antagonized the inhibitor effects of diazepam and gamma-aminobutyric acid on glutamate release. Similar results were obtained with the release of cysteine sulfinate except that a high concentration (100 microM) of gamma-aminobutyric acid was required for the inhibition. These results indicate the modulation by gamma-aminobutyric acid innervation of the release of excitatory amino acids in rat hippocampal formation, and also suggest that some of the pharmacological effects of diazepam may be a consequence of inhibition of excitatory amino acid transmission.  相似文献   

13.
Benzodiazepine agonists such as Ro 11-6896 [B10(+)], diazepam, clonazepam, and flurazepam were found to enhance muscimol-stimulated 36Cl- uptake into rat cerebral cortical synaptoneurosomes. The rank order of potentiation was B10(+) greater than diazepam greater than clonazepam greater than flurazepam. These benzodiazepines had no effect on 36Cl-uptake in the absence of muscimol. Further, the inactive enantiomer, Ro 11-6893 [B10(-)], and the peripheral benzodiazepine receptor ligand Ro 5-4864 did not potentiate muscimol-stimulated 36Cl- uptake at concentrations up to 10 microM. In contrast, the benzodiazepine receptor inverse agonists ethyl-beta-carboline-3-carboxylate and 6,7-dimethoxy-4-ethyl-beta- carboline-3-carboxylic acid methyl ester inhibited muscimol stimulated 36Cl- uptake. Benzodiazepines and beta-carbolines altered the apparent K0.5 of muscimol-stimulated 36Cl- uptake, without affecting the Vmax. The effects of both benzodiazepine receptor agonists and inverse agonists were reversed by the benzodiazepine antagonists Ro 15-1788 and CGS-8216. These data further confirm that central benzodiazepine receptors modulate the capacity of gamma-aminobutyric acid receptor agonists to enhance chloride transport and provide a biochemical technique for studying benzodiazepine receptor function in vitro.  相似文献   

14.
Creatine has been used previously to alter the energy balance of neurons in brain slices. In the present experiments, it was found to reduce the accumulation of gamma-[3H]aminobutyric acid ([3H]GABA) as synthesized from [3H]glutamine or [3H]glutamic acid in slices of rat neostriatum. The lowest effective concentration was 5 mM. Creatine (25 mM) was also effective when the degrading enzyme of GABA, i.e., GABA-alpha-oxoglutarate transaminase, was blocked by gabaculine. Creatine (25 mM) did not inhibit the uptake and subsequent accumulation of [3H]GABA. Thus, indirect evidence was obtained that creatine decreased the activity of the synthesizing enzyme of GABA, i.e., glutamate decarboxylase. When the direct effect of creatine (25 mM) on glutamate decarboxylase was studied in vitro, the agent indeed decreased the activity of the enzyme. Creatine (25 mM) also diminished the release of [3H]GABA (expressed as dpm/mg wet weight) from rat neostriatal slices, probably by reducing its synthesis and thus its readily releasable pool. These data are of importance for studies with creatine in complex neuronal systems, because they show that the agent changes not only neuronal energy balance, but also synthesis and release of the ubiquitous transmitter GABA.  相似文献   

15.
Abstract: The binding of [3H] γ-aminobutyric acid ([3H]GABA) and [3H]muscimol has been studied in purified synaptic plasma membrane (SPM) preparations from rat brain. Scatchard analysis of specific binding (defined as that displaced by 100 μMγ-aminobutyrate) indicated that the binding of both radiolabelled ligands was best described by a two component Langmuir adsorption isotherm. The apparent KD and Bmax values for [3H]GABA at 4°C were KD1, 20 nM; KD2,165 nM; Bmax1, 0.48 pmol;Bmax2, 6.0 pmol. mg?1; for [3H]muscimol at 4°C they were: KD1, 1.75 nM; KD2, 17.5 nM; Bmaxl, 0.84 pmol. mg?1; Bmax2, 4.8 pmol.mg?1; and for [3H]muscimol at 37°C they were: KD1, 7.0 nM; Km, 60 nM; Bmax], 0.5 pmol-mg?1; Bmax2, 7.2 pmol-mg1. Under the experimental conditions used, the similar Bmilx values for [3H]GABA and [3H]muscimol binding to the SPM preparations suggests that the high- and low-affinity components for the two radiolabeled ligands are identical. The effects of the GAB A antagonist bicuculline on the binding of [3H]muscimol at 4CC and 37°C were studied. At 4°C, antagonism of muscimol binding appeared to be competitive at the high-affinity site but noncompetitive at the low-affinity site. At 37°C, antagonism was again competitive at the high-affinity site but was of a mixed competitive/noncompetitive nature at the low-affinity site. Assuming that binding to the high-affinity site is associated with the pharmacological actions of bicuculline, the apparent KD values obtained suggest a pA2 value of 5.3 against [3H]muscimol at 4°C and 37°C. This figure is in good agreement with several estimates of the potency of bicuculline based on pharmacological measurements. Results from displacement studies using [3H]GABA and [3H]muscimol suggest that [3H]GABA might be a more satisfactory ligand than [3H]muscimol in GABA radioreceptor assays.  相似文献   

16.
Muscimol and t-butylbicyclophosphorothionate (TBPS) are known to label two distinct sites within the gamma-aminobutyric acidA (GABAA) receptor complex, i.e., the GABA recognition site and the chloride ionophore, respectively. Age-dependent changes in the specific binding of [3H]muscimol and [35S]TBPS were compared in membranes prepared from the cerebral cortex of rats, 2-800 days old. Perinatal (day 2) binding of muscimol and TBPS represented 8 and 20% of the respective values for adults (day 180). After the first week, muscimol binding increased more rapidly than TBPS binding. Levels near those of adults were reached at day 20 and remained practically unchanged in adulthood (day 180). In aged (780-day-old) rats, the binding of TBPS was significantly reduced, whereas muscimol binding did not change compared with adult values. This decrease of TBPS binding derived from a reduced density of binding sites, rather than from affinity changes. The allosteric responsiveness of TBPS binding to exogenous GABA was also reduced in aged animals. These findings indicate an age-related change in the molecular (structural) organization of the GABAA receptor-chloride ionophore complex in rat cerebral cortex.  相似文献   

17.
The effects of gamma-aminobutyric acid (GABA) on the uptake of 36Cl- into a membrane microsac preparation from isolated nerve cords of the cockroach Periplaneta americana was studied. On addition of 1 microM GABA (after 4-s incubation, then rapid quenching) the influx of 36Cl- was stimulated to a level 75% above that of the control value. This stimulation was reduced by picrotoxin (100 microM), but was not significantly affected by bicuculline (100 microM). Results of 36Cl- influx experiments are in agreement with data obtained from radiolabelled ligand binding assays and electrophysiological investigations on the same tissue. The method described represents a functional in vitro assay for CNS GABA receptors of insects.  相似文献   

18.
The potent marine toxin, maitotoxin, induced the release of gamma-[3H]aminobutyric acid (GABA) from reaggregate cultures of striatal neurons in a dose-dependent manner. Maitotoxin-induced release occurred following a lag period of several minutes and was persistent. Release induced by 70 mM K+ on the other hand was immediate and transient in nature. Co2+ (3 mM) and Cd2+ (1 mM) inhibited maitotoxin-induced release of GABA as did removal of extracellular Ca2+. However, the organic calcium antagonists nisoldipine, nitrendipine, and D-600 at concentrations of 10(-6) M did not block maitotoxin-induced or 70 mM K+-induced release. High concentrations of D-600 (10(-4) M) partially blocked both maitotoxin- and 70 mM K+-induced release. The dihydropyridine calcium agonist BAY K8644 (10(-6) M) did not enhance maitotoxin-induced or 70 mM K+-induced release. Replacement of Na+ in the incubation medium with choline led to an increased basal output of GABA and an apparent inhibition of the effect of maitotoxin. These data are discussed with reference to the hypothesis that maitotoxin can directly activate voltage-sensitive calcium channels.  相似文献   

19.
Abstract: The effect of Zn2+ on t -[3H]butylbicycloorthobenzoate ([3H]TBOB) binding to the GABAA receptor complex was studied autoradiographically in rat brain. Zn2+ inhibited [3H]TBOB binding in a dose-dependent manner at physiological concentrations. Saturation analysis revealed noncompetitive inhibition in various brain regions. The inhibitory effect of Zn2+ had regional heterogeneity; regions showing the greatest inhibition of [3H]TBOB binding were cortical laminae I–III, most areas of hippocampus, striatum, septum, and cerebellar cortex. Regions with relatively less inhibition of [3H]TBOB binding included cortical laminae V–VI, thalamus, superior colliculus, inferior colliculus, and central gray matter. The effect of Zn2+ and those of other GABAA ligands, such as benzodiazepines, bicuculline, isoguvacine, and picrotoxin, on [3H]TBOB binding seemed to be additive. Ni2+, Cd2+, and Cu2+ also inhibited [3H]TBOB binding with a regional heterogeneity similar to that produced by Zn2+. These results are consistent with Zn2+ acting at the previously detected recognition site on the GABAA receptor complex, distinct from the picrotoxin, GABA, and benzodiazepine sites. The regional heterogeneity of the Zn2+ effect may reflect differential regional distribution of GABAA receptor subtypes among brain regions. Other divalent cations probably act at the Zn2+ binding site.  相似文献   

20.
The release of gamma-aminobutyric acid (GABA) was studied in slices of the head of the rabbit caudate nucleus. The slices were preincubated with [3H]GABA and then superfused. Aminooxyacetic acid was present throughout. Both the tritium in the slices and that in the superfusate consisted practically entirely of [3H]GABA. Stimulation for 2 min by electrical field pulses of 3 ms width and 9 V/cm voltage drop (36 mA current strength) at 5 or 20 Hz elicited an overflow of [3H]GABA that amounted to 0.23 or 0.47% of the tritium content of the tissue, respectively, and was diminished by 85% in the presence of tetrodotoxin. At higher current strength, less of the stimulation-evoked overflow was tetrodotoxin-sensitive. cis-1,3-Aminocyclohexane carboxylic acid diminished the uptake of [3H]GABA into the tissue but did not change the percentage released by electrical stimulation. Ca2+ withdrawal greatly accelerated basal [3H]GABA efflux and almost abolished the response to stimulation. Nipecotic acid 10-1,000 microM enhanced both the basal and (up to eightfold) the stimulation-evoked overflow. The method described allows us to elicit electrically a quasiphysiological, i.e., Ca2+-dependent and tetrodotoxin-sensitive, neuronal release of [3H]GABA. Nipecotic acid diverts released [3H]GABA from reuptake to overflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号