首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vivo administration of [1-14C]pantothenic acid, which is the precursor of coenzyme A, resulted in the radioactive labelling of several mitochondrial proteins in rat liver. The incorporated radioactivity could be released by glutathione or 2-mercaptoethanol. Two mitochondrial matrix proteins acetyl-CoA acetyltransferase (liver and heart), an enzyme involved in the biosynthesis or degradation of ketone bodies, and 3-oxoacyl-CoA thiolase (liver), a protein participating in fatty acid oxidation were identified as modified proteins. The radioactivity was localized exclusively in forms A1 and A2 indicating that these forms represent the modified states of the acetyl-CoA acetyltransferase protein. Kinetics of incorporation of radioactivity revealed an accumulation of the modified forms. The ratio of specific radioactivities of A2 compared to A1 was 2.41 +/- 0.15 (n = 10). After in vivo labelling with [14C]leucine, the specific radioactivity of acetyl-CoA acetyltransferase depended on the state of the enzyme protein. The unmodified enzyme exhibited a lower specific radioactivity than its modified forms suggesting different turnover rates of these proteins.  相似文献   

2.
The liver mitochondrial acetyl-CoA acetyltransferase (acetyl-CoA:acetyl-CoA C-acetyltransferase, EC 2.3.1.9), is involved in ketone body synthesis. The enzyme can be chemically modified and inactivated by CoASH and also by CoASH-disulfides provided glutathione is present. The unmodified enzyme shows in its denatured state 7.95 +/- 0.44 sulfhydryl groups per enzyme and in its native state 3.92 +/- 0.34 sulfhydryl groups which react with Ellmann's reagent. The modified enzyme reveals in its native state also 4.07 +/- 0.25 sulfhydryl groups per enzyme, but in its denatured state 9.10 +/- 0.51 sulfhydryl groups could be detected. Approximately four sulfhydryl groups per enzyme, unmodified or modified, can be alkylated by iodoacetamide. These results prove for each subunit the existence of two sulfhydryl groups and suggest the existence of two disulfide bridges. The CoASH modification, which should proceed at one of these disulfide groups, prevents subsequent acetylation of the enzyme and is drastically reduced in the iodoacetamide-alkylated enzyme. In the demodification of the modified enzyme, the CoASH is set free as a mixed disulfide with glutathione.  相似文献   

3.
The influence of clofibrate and di(2-ethylhexyl)phthalate on mitochondrial acetyl-CoA acetyltransferase (acetyl-CoA: acetyl-CoA C-acetyltransferase, EC 2.3.1.9), the rate-limiting ketogenic enzyme, which can be modified and inactivated by CoA, was investigated. In fed rats, both compounds induced a doubling of ketone bodies in the blood and, moreover, an increase by about 13% in the hepatic relative amount of the unmodified, i.e., the most active form of the enzyme (immunoreactive protein). This shift would account for an elevation of overall enzyme activity by about 5% only. Thus, the CoA modification of mitochondrial acetyl-CoA acetyltransferase did not explain the entire augmentation of ketone bodies. However, clofibrate and di(2-ethylhexyl)phthalate also increased the immunospecific protein and enzyme activity by approx. 2- and 3-fold, respectively. These effects were observed in liver, but not in several extrahepatic tissues.  相似文献   

4.
Following denaturation of mitochondrial proteins by sodium dodecyl sulfate, a [1-14C]pantothenic acid-derived radioactivity proved to be acid precipitable in the outer membrane, the intermembrane space, the inner membrane and in the matrix of rat liver mitochondria, where it had the highest specific radioactivity of 541 +/- 29 cpm/100 micrograms protein. This tightly and/or covalently bound protein radioactivity could be released by incubation in the presence of dithioerythreitol; it was identified as [14C]coenzyme A by its HPLC retention time, its absorption spectrum and its radioactivity. This acid-stable and thiol-labile coenzyme A-binding apparently refers to specific protein binding sites. With the purified, homogeneous mitochondrial matrix enzymes acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase) (EC 2.3.1.9, acetyl-CoA:acetyl-CoA C-acetyltransferase) and 3-oxoacyl-CoA thiolase (EC 2.3.1.16) coenzyme A was found exclusively, e.g., in the modified, partially-active forms A1 und A2 of acetyl-CoA acetyltransferase and not in the unmodified fully-active enzyme. Thus it is evident that this coenzyme A modification is transient. We suggest that coenzyme A-modification is a signal involved in the assembly or the degradation process of distinct mitochondrial matrix proteins.  相似文献   

5.
The mitochondrial acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase, EC 2.3.1.9) is involved in ketone body biosynthesis. In its unmodified state, referred to as transferase B in former publications (Huth, W. (1981) Eur. J. Biochem. 120, 557-562), the enzyme is characterized by the highest specific activity of 21.65 mumol/min per mg protein (direction of acetoacetyl-CoA synthesis); several forms of the enzyme with lower specific activities result from chemical modification by an apparent covalent binding of CoASH. The chemical modification results in an inactivation of the enzyme: a 2 h incubation with 0.2 mM CoASH at pH 8.1 at 30 degrees C inactivates up to 95%. Both processes, the CoASH-binding and the resulting inactivation, can be simultaneously reversed by treatment with glutathione. The specificity of inactivation is limited to CoASH and the intact sulfhydryl group is a prerequisite for this process. The enzyme exhibits a limited number (n = 3.2) of high-affinity (Ka = 26.7 microM) specific binding sites for CoASH. The inactivation-reactivation cycle of acetyl-CoA acetyltransferase by CoASH and glutathione may involve a protein disulfide-thiol exchange and represents a mode of control in modulating the amount of active enzyme.  相似文献   

6.
Biotinyl proteins were labelled by incubation of SDS-denatured preparations of subcellular fractions of rat liver with [14C]methylavidin before polyacrylamide-gel electrophoresis. Fluorographic analysis showed that mitochondria contained two forms of acetyl-CoA carboxylase [acetyl-CoA:carbon dioxide ligase (ADP-forming) EC 6.4.1.2], both of which were precipitated by antibody to the enzyme. When both forms were considered, almost three-quarters of the total liver acetyl-CoA carboxylase was found in the mitochondrial fraction of liver from fed rats while only 3.5% was associated with the microsomal fraction. The remainder was present in cytosol, either as the intact active enzyme or as a degradation product. The actual specific activity of the cytosolic enzyme was approx. 2 units/mg of acetyl-CoA carboxylase protein while that of the mitochondrial enzyme was about 20-fold lower, indicating that mitochondrial acetyl-CoA carboxylase was relatively inactive. Fractionation of mitochondria with digitonin showed that acetyl-CoA carboxylase was associated with the outer mitochondrial membrane. The available evidence suggests that mitochondrial acetyl-CoA carboxylase represents a reservoir of enzyme which can be released and activated under lipogenic conditions.  相似文献   

7.
1. The nature of the acetyl-CoA hydrolase (EC 3.1.2.1) reaction in rat and sheep liver homogenates was investigated. 2. The activity determined in an incubated system was 5.10 and 3.28nmol/min per mg of protein for rat and sheep liver homogenate respectively. This activity was not affected by the addition of l-carnitine, but was decreased by the addition of d-carnitine. 3. No acetyl-CoA hydrolase activity could be detected in rat or sheep liver homogenates first treated with Sephadex G-25. This treatment decreased the carnitine concentrations of the homogenates to about one-twentieth. Subsequent addition of l-carnitine, but not d-carnitine, restored the apparent acetyl-CoA hydrolase activity. 4. Sephadex treatment did not affect acetyl-carnitine hydrolase activity of the homogenates, which was 5.8 and 8.1nmol/min per mg of protein respectively for rat and sheep liver. 5. Direct spectrophotometric assay of acetyl-CoA hydrolase, based on the reaction of CoA released with 5,5'-dithiobis-(2-nitrobenzoic acid), clearly demonstrated that after Sephadex treatment no activity could be measured. 6. Carnitine acetyltransferase (EC 2.3.1.7) activity measured in the same assay system in response to added l-carnitine was very low in normal rat liver homogenates, owing to the apparent high acetyl-CoA hydrolase activity, but was increased markedly after Sephadex treatment. The V(max.) for this enzyme in rat liver homogenates was increased from 3.4 to 14.8nmol/min per mg of protein whereas the K(m) for l-carnitine was decreased from 936 to 32mum after Sephadex treatment. 7. Acetyl-CoA hydrolase activity could be demonstrated in disrupted rat liver mitochondria but not in separated outer or inner mitochondrial membrane fractions. Activity could be demonstrated after recombination of outer and inner mitochondrial membrane fractions. The outer mitochondrial membrane fraction showed acetylcarnitine hydrolase activity and the inner mitochondrial membrane fraction showed carnitine acetyltransferase activity. 8. The results presented here demonstrate that acetyl-CoA hydrolase activity in rat and sheep liver is an artifact and the activity is due to the combined activity of carnitine acetyltransferase and acetylcarnitine hydrolase.  相似文献   

8.
Carnitine acetyltransferase was isolated from yeast Saccharomyces cerevisiae with an apparent molecular weight of 400,000. The enzyme contains identical subunits of 65,000 Da. The Km values of the isolated enzyme for acetyl-CoA and for carnitine were 17.7 microM and 180 microM, respectively. Carnitine acetyltransferase is an inducible enzyme, a 15-fold increase in the enzyme activity was found when the cells were grown on glycerol instead of glucose. Carnitine acetyltransferase, similarly to citrate synthase, has a double localization (approx. 80% of the enzyme is mitochondrial), while acetyl-CoA synthetase was found only in the cytosol. In the mitochondria carnitine acetyltransferase is located in the matrix space. The incorporation of 14C into CO2 and in lipids showed a similar ratio, 2.9 and 2.6, when the substrate was [1-14C]acetate and [1-14C]acetylcarnitine, respectively. Based on these results carnitine acetyltransferase can be considered as an enzyme necessary for acetate metabolism by transporting the activated acetyl group from the cytosol into the mitochondrial matrix.  相似文献   

9.
Acetyl-CoA acetyltransferase (EC 2.3.1.9) from rat liver mitochondria, which catalyzes the first step in the biosynthesis of ketone bodies, exists in two forms, designated transferase A and transferase B. Both transferases showed immunochemical cross-reactivity, but are immunologically unrelated to cytosolic acetyl-CoA acetyltransferase activity and the mitochondrial acetyl-CoA acyltransferase from rat liver. The transferases A and B were estimated to have molecular weights of 151 000 in the absence and 40 000 in the presence of sodium dodecyl sulfate. They differ with respect to charge states and multiplicity of forms as indicated by isoelectric focusing. Transferase A appeared in two forms with isoelectric points of 8.4 and 9.1, whereas transferase B represents a stable protein state with an isoelectric point of 9.0. Kinetic analysis of the reactions leading to acetoacetyl-CoA synthesis revealed saturation curves with multiple intermediary plateaus, indicating a complex kinetic behaviour. The data presented are interpreted as representing a microheterogeneity of forms of the mitochondrial acetyl-CoA acetyltransferase. The kinetic properties exhibited suggest a role for this microheterogeneity in the regulation of ketogenesis.  相似文献   

10.
Purification and properties of carnitine acetyltransferase from human liver   总被引:2,自引:0,他引:2  
Carnitine acetyltransferase was purified from the supernatant obtained after centrifugation of human liver homogenate to a final specific activity of 78.75 unit.mg-1 with acetyl-CoA as a substrate. Human carnitine acetyltransferase is a monomer of 60.5 kDa with maximum activity in the presence of propionyl-CoA and a pH optimum of 8.7. Apparent Km values for acetyl-CoA are three times lower than for decanoyl-CoA. Km values for L-carnitine in the presence of acetyl-CoA are six times lower than in the presence of decanoyl-CoA. Km values for acetylcarnitine are three times lower than for octanoylcarnitine. The polyclonal antibodies against human carnitine acetyltransferase recognize a 60.5-kDa peptide in the purified preparation of human liver and brain homogenates and in immunoblots of mitochondrial and peroxisomal fractions from human liver. Immunoprecipitation and SDS/PAGE analysis of 35S-labelled proteins produced by human fibroblasts indicate that mitochondrial carnitine acetyltransferase is synthesized as a precursor of 65 kDa. We also purified carnitine acetyltransferase from the pellet obtained after centrifugation of liver homogenate. The pellet was extracted by sonication in the presence of 0.5% Tween 20. The chromatographic procedures for the purification and the kinetic, physical and immunological properties of pellet-extracted carnitine acetyltransferase are similar to those of carnitine acetyltransferase purified from the supernatant of human liver homogenate.  相似文献   

11.
Bovine liver mitochondrial acetyl-CoA acetyltransferase (acetyl-CoA:acetyl-CoA C-acetyltransferase, EC 2.3.1.9) has been obtained in three forms designated transferase I, A and B on the basis of their elution positions from chromatography on phosphocellulose. All forms have been shown to have a molecular weight of about 152 000, each being composed of four similar subunits. Amino acid analysis of transferase A and B, the two major forms, revealed a close relationship between both forms with almost identical amino acid composition and arginine as N-terminal residue. The three transferases differ with respect to their redox state and their multiplicity of forms with isoelectric points of 6.9, 7.5 and 8.8, into which the transferases I and A were spontaneously transformed upon isoelectric focusing or rechromatography on phosphocellulose. Transferase B represents a stable enzyme form with an isoelectric point of 8.8. Although the redox state of transferase B can be adjusted to that of transferase A still a difference in charge and in the multiplicity of forms exists, thus indicating different protein states.  相似文献   

12.
The carnitine acetyltransferase and glutamate dehydrogenase activities of guinea-pig liver and other tissues were estimated. Both enzymes are wholly mitochondrial, and can only be fully observed after disruption of the mitochondrion. Triton X-100 (0.1%) or freeze-drying revealed more activity than other methods tried. In mitochondria prepared and suspended in 0.25m-sucrose and in cell cytoplasm only small fractions of the total enzymic activity could be observed in guinea-pig liver: on average 7.5% of carnitine acetyltransferase and 5.5% of glutamate dehydrogenase. It is concluded that, in liver or mammary gland of goat, guinea pig or rat, little or no carnitine acetyltransferase is available in vivo to acetyl-CoA outside the mitochondrion.  相似文献   

13.
The analysis of the initial-rate kinetics of the liver mitochondrial acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase) in the direction of acetoacetyl-CoA synthesis under product inhibition was performed. 1. Acetyl-CoA acetyltransferase shows a hyperbolic response of reaction velocity to changes in acetyl-CoA concentrations with an apparent Km of 0.237 +/- 0.001 mM. 2. CoASH is a (non-competitive) product inhibitor with a Kis of 22.6 microM and shifts the apparent Km for acetyl-CoA to the physiological concentration of this substrate in mitochondria (S0.5 = 1.12 mM in the presence of 121 microM CoASH). 3. CoASH causes a transformation of the Michaelis-Menten kinetics into initial-rate kinetics with four intermediary plateau regions. 4. The product analogue desulpho-CoA triggers a negative cooperativity as to the dependence of the reaction velocity on the acetyl-CoA concentration. These product effects drastically desensitize the acetyl-CoA acetyltransferase in its reaction velocity response to the acetyl-CoA concentrations and simultaneously extend the substrate dependence range. Thus a control of acetoacetyl-CoA synthesis by the substrate is established over the physiological acetyl-CoA concentration range. We suggest that this control mechanism is the key in establishing the rates of ketogenesis.  相似文献   

14.
The breakdown of acetylcarnitine catalysed by extracts of rat and sheep liver was completely abolished by Sephadex G-25 gel filtration, whereas the hydrolysis of acetyl-CoA was unaffected. Acetyl-CoA and CoA acted catalytically in restoring the ability of Sephadex-treated extracts to break down acetylcarnitine, which was therefore not due to an acetylcarnitine hydrolase but to the sequential action of carnitine acetyltransferase and acetyl-CoA hydrolase. Some 75% of the acetyl-CoA hydrolase activity of sheep liver was localized in the mitochondrial fraction. Two distinct acetyl-CoA hydrolases were partially purified from extracts of sheep liver mitochondria. Both enzymes hydrolysed other short-chain acyl-CoA compounds and succinyl-CoA (3-carboxypropionyl-CoA), but with one acetyl-CoA was the preferred substrate.  相似文献   

15.
The enzyme 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine: acetyl-CoA acetyltransferase (EC 2.3.1.67) was purified from rat spleen approx. 1500-fold in 1.6% yield. The specific activity of the purified enzyme was 0.317 +/- 0.089 mumol/min per mg of protein (mean +/- S.D., n = 6). The Km for the substrate acetyl-CoA was 137 +/- 13 microM and the pH optimum was about 8. Incubation of the purified enzyme was 1-O-[3H]octadecyl-2-lyso-sn-glycero-3-phosphocholine followed by electrophoresis resulted in the incorporation of radioactivity into a protein of Mr 29,000. The enzyme was most active towards 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine as substrate, 1-palmitoyl-2-lyso-glycero-3-phosphocholine being a poor substrate. In addition, the enzyme preferred acetyl-CoA to palmitoyl-CoA or oleoyl-CoA as substrate.  相似文献   

16.
Acetyl-CoA carboxylase catalyzes the first committed step in the synthesis of fatty acids. Because fatty acids are required during myelination in the developing brain, it was proposed that the level of acetyl-CoA carboxylase may be highest in embryonic brain. The presence of acetyl-CoA carboxylase activity was detected in chick embryo brain. Its activity varied with age, showing a peak in the 17-18-day-old embryo and decreasing thereafter. The enzyme, affinity-purified from 18-day-old chick embryo brain, appeared as a major protein band on polyacrylamide electrophoresis gels in the presence of sodium dodecyl sulfate (Mr 265,000), indistinguishable from the 265 kDa isozyme of liver acetyl-CoA carboxylase. It had significant activity (Sp act = 1.1 mumol/min per mg protein) in the absence of citrate. There was a maximum stimulation of only 25% in the presence of citrate. Dephosphorylation using [acetyl-CoA carboxylase] phosphatase 2 did not result in activation of the enzyme. Palmitoyl-CoA (0.1 mM) and malonyl-CoA (1 mM) inhibited the activity to 95% and 71%, respectively. Palmitoylcarnitine, however, did not show significant inhibition. The enzyme was inhibited (greater than 95%) by avidin; however, avidin did not show significant inhibition in the presence of excess biotin. The enzyme was also inhibited (greater than 90%) by antibodies against liver acetyl-CoA carboxylase. An immunoblot or avidin-blot detected only one protein band (Mr 265,000) in preparations from chick embryo brain or adult liver. These observations suggest that acetyl-CoA carboxylase is present in embryonic brain and that the enzyme appears to be similar to the 265 kDa isozyme of liver.  相似文献   

17.
The discovery of a cold-labile cytosolic acetyl-CoA hydrolase of high activity in rat liver by Prass et al. [(1980) J. Biol. Chem. 255, 5215-5223] has questioned the importance of mitochondrial acetyl-CoA hydrolase for the formation of free acetate [Grigat et al. (1979) Biochem. J. 177, 71-79] under physiological conditions. Therefore this problem has been reevaluated by comparing various properties of the two enzymes. Cold-labile cytosolic acetyl-CoA hydrolase bands with an apparent Mr of 68000 during SDS/polyacrylamide gel electrophoresis, while the native enzyme elutes in two peaks with apparent Mr of 136000 and 245000 during gel chromatography in the presence of 2 mM ATP. The mitochondrial enzyme elutes under the same conditions with an apparent Mr of 157000. Under conditions where the cold-labile enzyme binds strongly to DEAE-Bio-Gel and ATP-agarose, the mitochondrial enzyme remains unbound. The cold-labile enzyme can be activated 14-fold by ATP, half-maximal activation occurring already at 40 microM ATP. AdoPP[NH]P, AdoPP[CH2]P and GTP have a similar though weaker effect. ADP as well as GDP can completely inhibit the cold-labile enzyme with 50% inhibition occurring for both nucleotides at about 1.45 microM. The binding of ATP and ADP is competitive. Acetyl phosphate and pyrophosphate have no effect on the activity of the cold-labile enzyme. The mitochondrial acetyl-CoA hydrolase is not affected by these nucleotides. CoASH is a strong product inhibitor (approximately equal to 80% inhibition at 40 microM CoASH) of the cold-labile enzyme, but only a weak inhibitor of the mitochondrial enzyme. Under in vivo conditions the activity of the cold-labile cytosolic acetyl-CoA hydrolase can be no more than 7% of the activity calculated for mitochondrial acetyl-CoA hydrolase under the same conditions. Accordingly the mitochondrial enzyme seems to be mainly responsible for the formation of free acetate by the intact liver, especially in view of the fact that the substrate specificity of the mitochondrial enzyme is much higher (activity ratios acetyl-CoA/butyryl-CoA 4.99 and 1.16 for the mitochondrial and the cold-labile enzyme respectively). Alloxan diabetes neither increased the activity of the cold-labile enzyme nor that of the mitochondrial enzyme. No experimental support has been found yet for the hypothesis that the acetyl-CoA hydrolase activity of the cold-labile enzyme represents the side-activity of an acetyl-transferase.  相似文献   

18.
If acetyl-CoA carboxylase in epididymal fat tissue is subject to control by convalent modification as in the case of the liver enzyme, catalytically different forms of carboxylase should exist, independent of polymerization. By treating epididymal fat tissue in culture with epinephrine, we have demonstrated catalytically less active forms of acetyl-CoA carboxylase. The catalytically less active forms of the enzyme reacted to antibody with the same efficiency as the active form of carboxylase. However, the less active enzyme formed by epinephrine treatment of tissues has a sedimentation constant of 30 to 35 S, whereas that of the enzyme from control tissue is 45 S. Incubation of the less active forms of the carboxylase with 10 mM citrate and up to 10 mg/ml of bovine serum albumin activated the enzyme without any change in the sedimentation constant. Therefore, the less active forms of the carboxylase formed as a result of epinephrine treatment are not due to the depolymerization of polymeric forms (45 S) to the protomeric forms (17 to 20 S), but to the formation of intermediate species of carboxylase which cannot form polymeric enzyme (45 S) in the presence of high concentrations of citrate.  相似文献   

19.
The enzyme arylamine acetyltransferase (acetyl-CoA:arylamine N-acetyltransferase, EC 2.3.1.5) from pigeon liver is immobilized onto differently derivatized controlled pore glass beads. Different silanes, spacer arms and reactive end-groups were tested, and immobilized enzyme stability tests were performed. From these experiments, the method of choice was selected: immobilization on controlled pore glass beads (24 nm pore size, 75-125 microns particle size) derivatized with gamma-aminopropyl and glutaraldehyde as the reactive end group. The kinetic properties of an enzyme reactor were investigated and optimized. The goal was to obtain a rapid high-yield conversion of 0.5-1 mumol acetyl-CoA to N-acetylserotonin, so that the reactor is useful for the 11C-labelling of N-acetylserotonin. Using an enzyme reactor (9.8 x 0.5 cm i.d.) containing 4.6 U active arylamine acetyltransferase immobilized onto 930 mg carrier, a 70% conversion of acetyl-CoA was obtained within 4 min.  相似文献   

20.
Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号