首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the accompanying article, we compared main functional properties of the three mammalian inositol 1,4,5-trisphosphate receptors (InsP3R) isoforms. In this article we focused on modulation of mammalian InsP3R isoforms by cytosolic Ca2+. We found that: 1), when recorded in the presence of 2 microM InsP3 and 0.5 mM ATP all three mammalian InsP3R isoforms display bell-shaped Ca2+ dependence in physiological range of Ca2+ concentrations (pCa 8-5); 2), in the same experimental conditions InsP3R3 is most sensitive to modulation by Ca2+ (peak at 107 nM Ca2+), followed by InsP3R2 (peak at 154 nM Ca2+), and then by InsP3R1 (peak at 257 nM Ca2+); 3), increase in ATP concentration to 5 mM had no significant effect of Ca2+ dependence of InsP3R1 and InsP3R2; 4), increase in ATP concentration to 5 mM converted Ca2+ dependence of InsP3R3 from "narrow" shape to "square" shape; 5), ATP-induced change in the shape of InsP3R3 Ca2+ dependence was mainly due to an >200-fold reduction in the apparent affinity of the Ca2+-inhibitory site; 6), the apparent Ca2+ affinity of the Ca2+ sensor region (Cas) determined in biochemical experiments is equal to 0.23 microM Ca2+ for RT1-Cas, 0.16 microM Ca2+ for RT2-Cas, and 0.10 microM Ca2+ for RT3-Cas; and 7), Ca2+ sensitivity of InsP3R1 and InsP3R3 isoforms recorded in the presence of 2 microM InsP3 and 0.5 mM ATP or 2 microM InsP3 and 5 mM ATP can be exchanged by swapping their Cas regions. Obtained results provide novel information about functional properties of mammalian InsP3R isoforms and support the importance of the Ca2+ sensor region (Cas) in determining the sensitivity of InsP3R isoforms to modulation by Ca2+.  相似文献   

2.
Inositol 1,4,5-trisphosphate receptors (InsP3R) play a key role in intracellular calcium (Ca2+) signaling. Three mammalian InsP3R isoforms--InsP3R type 1 (InsP3R1), InsP3R type 2 (InsP3R2), and InsP3R type 3 (InsP3R3) are expressed in mammals, but the functional differences between the three mammalian InsP3R isoforms are poorly understood. Here we compared single-channel behavior of the recombinant rat InsP3R1, InsP3R2, and InsP3R3 expressed in Sf9 cells, reconstituted into planar lipid bilayers and recorded with 50 mM Ba2+ as a current carrier. We found that: 1), for all three mammalian InsP3R isoforms the size of the unitary current is 1.9 pA and single-channel conductance is 74-80 pS; 2), in optimal recording conditions the maximal single-channel open probability for all three mammalian InsP3R isoforms is in the range 30-40%; 3), in optimal recording conditions the mean open dwell time for all three mammalian InsP3R isoforms is 7-8 ms, the mean closed dwell time is approximately 10 ms; 4), InsP3R2 has the highest apparent affinity for InsP(3) (0.10 microM), followed by InsP3R1 (0.27 microM), and then by InsP3R3 (0.40 microM); 5), InsP3R1 has a high-affinity (0.13 mM) ATP modulatory site, InsP3R2 gating is ATP independent, and InsP3R3 has a low-affinity (2 mM) ATP modulatory site; 6), ATP modulates InsP3R1 gating in a noncooperative manner (n(Hill) = 1.3); 7), ATP modulates InsP3R3 gating in a highly cooperative manner (n(Hill) = 4.1). Obtained results provide novel information about functional properties of mammalian InsP3R isoforms.  相似文献   

3.
The cerebellar inositol 1,4,5-trisphosphate (InsP3) receptor is a high molecular weight glycoprotein abundantly expressed in Purkinje cells. The subunit structure of the InsP3 receptor protein was examined by cross-linking experiments. Agarose-polyacrylamide gel electrophoresis of the cross-linked materials demonstrated that the cerebellar InsP3 receptor protein is composed of four noncovalently bound identical subunits each with a Mr of 320,000 in both purified and microsome-bound states. Chromatography of the purified receptor on a calmodulin-Sepharose column demonstrated a Ca2(+)-dependent interaction of the InsP3 receptor with calmodulin. Photoaffinity labeling of the cerebellar microsomal fraction with [alpha-32P]8-azidoadenosine 5'-triphosphate revealed the presence of ATP-binding site in the InsP3 receptor. Scatchard analysis of the purified InsP3 receptor revealed the Bmax and Kd values for ATP binding of 2.3 pmol/micrograms and 17 microM, respectively. Reconstitution of the purified InsP3 receptor into the planar lipid bilayer indicated channel activity in the purified receptor. It exhibited a calcium conductance (26 pS in 53 mM Ca2+) and sodium conductance (21 pS in 100-500 mM asymmetric Na+ solutions) with permeability ratios of PCa/PTris = 6.3 and PNa/PCl = 5.4. The purified channel was activated with submillimolar ATP in the presence of InsP3 and modified to reach a large conductance state.  相似文献   

4.
A family of inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channels plays a central role in Ca2+ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP3R-1) and recombinant rat type 3 InsP3R (r-InsP3R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enhanced affinity and reduced cooperativity of Ca2+ activation sites of the InsP3-liganded type 3 channel distinguished the two isoforms. Because Ca2+ activation of type 1 channel was the target of regulation by cytoplasmic ATP free acid concentration ([ATP](i)), here we studied the effects of [ATP]i on the dependence of r-InsP(3)R-3 gating on cytoplasmic free Ca2+ concentration ([Ca2+]i. As [ATP]i was increased from 0 to 0.5 mM, maximum r-InsP3R-3 channel open probability (Po) remained unchanged, whereas the half-maximal activating [Ca2+]i and activation Hill coefficient both decreased continuously, from 800 to 77 nM and from 1.6 to 1, respectively, and the half-maximal inhibitory [Ca2+]i was reduced from 115 to 39 microM. These effects were largely due to effects of ATP on the mean closed channel duration. Whereas the r-InsP3R-3 had a substantially higher Po than X-InsP3R-1 in activating [Ca2+]i (< 1 microM) and 0.5 mM ATP, the Ca2+ dependencies of channel gating of the two isoforms became remarkably similar in the absence of ATP. Our results suggest that ATP binding is responsible for conferring distinct gating properties on the two InsP3R channel isoforms. Possible molecular models to account for the distinct regulation by ATP of the Ca2+ activation properties of the two channel isoforms and the physiological implications of these results are discussed. Complex regulation by ATP of the types 1 and 3 InsP3R channel activities may enable cells to generate sophisticated patterns of Ca2+ signals with cytoplasmic ATP as one of the second messengers.  相似文献   

5.
The inositol 1,4,5-trisphosphate receptor (InsP3R) is an intracellular Ca2+ release channel which upon activation initiates many cellular functions. Multiple InsP3R subtypes are expressed in most cell types but the physiological significance of this heterogeneity is poorly understood. This study has directly compared the functional properties of the three different InsP3R isoforms by analyzing their InsP3-induced Ca2+ release (IICR) properties in cell lines which predominantly express each isoform subtype. The InsP3-dependence of the amount or extent of IICR was InsP3R isoform-specific, with the type III isoform having the lowest affinity with respect to Ca2+ release. The transient kinetics of IICR, measured using stopped-flow spectrofluorimetry, however, were similar for all three InsP3R isoforms. At maximal InsP3 concentrations (20 microM) the rate constants where between 0.8 and 1.0 s(-1) for the fast phase and 0.25-0.45 s(-1) for the slow phase. The concentration of InsP3 required to induce half-maximal rates of Ca2+ release (EC50) were also similar for the three isoforms (0.2-0.4 microM for the fast phase and 0.75-0.95 microM for the slow phase). These results indicate the InsP3R channel does not significantly differ functionally in terms of Ca2+ release rates between isoforms. The temporal and spatial features of intracellular Ca2+ signals are thus probably achieved through InsP3R isoform-specific regulation or localization rather than their intrinsic Ca2+ efflux properties.  相似文献   

6.
Depletion of intracellular calcium stores induces transmembrane Ca2+ influx. We studied Ca(2+)- and Ba(2+)-permeable ion channels in A431 cells after store depletion by dialysis of the cytosol with 10 mM BAPTA solution. Cell-attached patches of cells held at low (0.5 microM) external Ca2+ exhibited transient channel activity, lasting for 1-2 min. The channel had a slope conductance of 2 pS with 200 mM CaCl2 and 16 pS with 160 mM BaCl2 in the pipette. Channel activity quickly ran down in excised inside-out patches and was not restored by InsP3 and/or InsP4. Thapsigargin induced activation in cells kept in 1 mM external Ca2+ after BAPTA dialysis. These channels represent one Ca2+ entry pathway activated by depletion of internal calcium stores and are clearly distinct from previously identified calcium repletion currents.  相似文献   

7.
A full-length rat type 2 inositol 1,4,5-trisphosphate (InsP(3)) receptor cDNA construct was generated and expressed in COS-1 cells. Targeting of the full-length recombinant type 2 receptor protein to the endoplasmic reticulum was confirmed by immunocytochemistry using isoform specific affinity-purified antibodies and InsP(3)R-green fluorescent protein chimeras. The receptor protein was solubilized and incorporated into proteoliposomes for functional characterization. Single-channel recordings from proteoliposomes fused into planar lipid bilayers revealed that the recombinant protein formed InsP(3)- and Ca(2+)-sensitive ion channels. The unitary conductance ( approximately 250 pS; 220/20 mM Cs(+) as charge carrier), gating, InsP(3), and Ca(2+) sensitivities were similar to those previously described for the native type 2 InsP(3)R channel. However, the maximum open probability of the recombinant channel was slightly lower than that of its native counterpart. These data show that our full-length rat type 2 InsP(3)R cDNA construct encodes a protein that forms an ion channel with functional attributes like those of the native type 2 InsP(3)R channel. The possibility of measuring the function of single recombinant type 2 InsP(3)R is a significant step toward the use of molecular tools to define the determinants of isoform-specific InsP(3)R function and regulation.  相似文献   

8.
Activation of phospholipase C (PLC)-mediated signaling pathways in nonexcitable cells causes the release of Ca2+ from intracellular Ca2+ stores and activation of Ca2+ influx across the plasma membrane. Two types of Ca2+ channels, highly Ca2+-selective ICRAC and moderately Ca2+-selective ISOC, support store-operated Ca2+ entry process. In previous patch-clamp experiments with a human carcinoma A431 cell line we described store-operated Imin/ICRACL plasma membrane Ca2+ influx channels. In the present paper we use whole-cell and single-channel recordings to further characterize store-operated Ca2+ influx pathways in A431 cells. We discovered that (a) ICRAC and ISOC are present in A431 cells; (b) ICRAC currents are highly selective for divalent cations and fully activate within 150 s after initiation of Ca2+ store depletion; (c) ISOC currents are moderately selective for divalent cations (PBa/PCs = 14.5) and require at least 300 s for full activation; (d) ICRAC and ISOC currents are activated by PLC-coupled receptor agonists; (e) ISOC currents are supported by Imin/ICRACL channels that display 8.5-10 pS conductance for sodium; (f) ICRAC single channel conductance for sodium is estimated at 0.9 pS by the noise analysis; (g) Imin/ICRACL channels are activated in excised patches by an amino-terminal fragment of InsP3R1 (InsP3R1N); and (h) InsP3 binding to InsP3R1N is necessary for activation of Imin/ICRACL channels. Our findings provide novel information about store-operated Ca2+ influx pathways in A431 cells.  相似文献   

9.
Many hormones and neurotransmitters raise intracellular calcium (Ca(2+)) by generating InsP(3) and activating the inositol 1,4, 5-trisphosphate receptor (InsP(3)R). Multiple isoforms with distinct InsP(3) binding properties () have been identified (). The type III InsP(3)R lacks Ca(2+)-dependent inhibition, a property that makes it ideal for signal initiation (). Regulation of the type III InsP(3)R by InsP(3) and ATP was explored in detail using planar lipid bilayers. In comparison to the type I InsP(3)R, the type III InsP(3)R required a higher concentration of InsP(3) to reach maximal channel activity (EC(50) of 3.2 microM versus 0.5 microM for the types III and I InsP(3)R, respectively). However, the type III InsP(3)R did reach a 2.5-fold higher level of activity. Although activation by InsP(3) was isoform-specific, regulation by ATP was similar for both isoforms. In the presence of 2 microM InsP(3), low ATP concentrations (<6 mM) increased the open probability and mean open time. High ATP concentrations (>6 mM) decreased channel activity. These results illustrate the complex nature of type III InsP(3)R regulation. Enhanced channel activity in the presence of high InsP(3) may be important during periods of prolonged stimulation, whereas allosteric modulation by ATP may help to modulate intracellular Ca(2+) signaling.  相似文献   

10.
BACKGROUND INFORMATION: Oscillations of cytosolic Ca2+ are well-known to rely on the regulatory properties of the InsP3R (inositol 1,4,5-trisphosphate receptor). Three isoforms of this channel have been identified. They differ in their regulatory properties by Ca2+ and InsP3. Experiments in different cell types clearly indicate that the relative amounts of each isoform affect the time course of Ca2+ changes after agonist stimulation. In the present study, we investigate whether different steady-state curves for the open probability of the InsP3Rs as a function of Ca2+ imply different dynamical behaviours when these receptors are present in a cellular environment. We therefore describe by a specific phenomenological model the three main types of curves that have been reported: (i) the classical bell-shaped curve, (ii) the bell-shaped curve that is shifted towards higher Ca2+ concentrations when InsP3 is increased, and (iii) a monotonous increasing function of cytosolic Ca2+. RESULTS: We show that, although these types of curves can be ascribed to slight differences in the channel regulation by Ca2+ and InsP3, they can indicate important variations as to the receptor role in cellular Ca2+ control. Thus the receptor associated with the classical bell-shaped curve appears to be the most robust Ca2+ oscillator. If the steady-state curve is supposed to be a monotonous increasing function of cytosolic Ca2+, the modelled receptor cannot sustain Ca2+ oscillations in the absence of Ca2+ exchanges with the extracellular medium. When the bell-shaped curve is shifted towards higher Ca2+ concentrations with increasing InsP3 levels, the model predicts that the receptor is less robust to changes in density; this receptor, however, provides a finer control of the steady-state level of Ca2+ when varying the InsP3 concentration. CONCLUSIONS: Our model allows us to propose an explanation for the experimental observations about the effect of selectively expressing or down-regulating InsP3R isoforms, as well as to make theoretical predictions.  相似文献   

11.
The conduction properties of inositol (1,4,5)-trisphosphate (InsP3)- gated calcium (Ca) channels (InsP3R) from canine cerebellum for divalent cations and the regulation of the channels by intraluminal Ca were studied using channels reconstituted into planar lipid bilayers. Analysis of single-channel recordings performed with different divalent cations present at 55 mM on the trans (intraluminal) side of the membrane revealed that the current amplitude at 0 mV and the single- channel slope conductance fell in the sequence: Ba (2.2 pA, 85 pS) > Sr (2.0 pA, 77 pS) > Ca (1.4 pA, 53 pS) > Mg (1.1 pA, 42 pS). The mean open time of the InsP3R recorded with Ca (2.9 ms) was significantly shorter than with other divalent cations (approximately 5.5 ms). The "anomalous mole fraction effect" was not observed in mixtures of divalent cations (Mg and Ba), suggesting that these channels are single- ion pores. Measurements of InsP3R activity at different intraluminal Ca levels demonstrated that Ca in the submillimolar range did not potentiate channel activity, and that very high levels of intraluminal Ca (> or = 10 mM) decreased channel open probability 5-10-fold. When InsP3R were measured with Ba as a current carrier in the presence of 110 mM cis potassium, a PBa/PK of 6.3 was estimated from the extrapolated value for the reversal potential. When the unitary current through the InsP3R at 0 mV was measured as a function of the permeant ion (Ba) concentration, the half-maximal current occurred at 10 mM trans Ba. The following conclusions are drawn from these data: (a) the conduction properties of InsP3R are similar to the properties of the ryanodine receptor, another intracellular Ca channel, and differ dramatically from the properties of voltage-gated Ca channels of the plasma membrane. (b) The estimated size of the Ca current through the InsP3R under physiological conditions is 0.5 pA, approximately four times less than the Ca current through the ryanodine receptor. (c) The potentiation of InsP3R by intraluminal Ca in the submillimolar range remains controversial. (d) A quantitative model that explains the inhibitory effects of high trans Ca on InsP3R activity was developed and the kinetic parameters of InsP3R gating were determined.  相似文献   

12.
Using the patch-clamp technique, we have identified an intermediate conductance Ca(2+)-activated K(+) channel from bullfrog (Rana catesbeiana) erythrocytes and have investigated the regulation of channel activity by cytosolic ATP. The channel was highly selective for K(+) over Na(+), gave a linear I-V relationship with symmetrical 117.5 mM K(+) solutions and had a single-channel conductance of 60 pS. Channel activity was dependent on Ca(2+) concentration (K(1/2) = 600 nM) but voltage-independent. These basic characteristics are similar to those of human and frog erythrocyte Ca(2+)-activated K(+) (Gardos) channels previously reported. However, cytoplasmic application of ATP reduced channel activity with block exhibiting a novel bell-shaped concentration dependence. The channel was inhibited most by approximately 10 microM ATP (P(0) reduced to 5% of control) but less blocked by lower and higher concentrations of ATP. Moreover, the novel type of ATP block did not require Mg(2+), was independent of PKA or PKC, and was mimicked by a nonhydrolyzable ATP analog, AMP-PNP. This suggests that ATP exerts its effect by direct binding to sites on the channel or associated regulatory proteins, but not by phosphorylation of either of these components.  相似文献   

13.
Inositol 1,4,5-trisphosphate (InsP(3)) receptors (InsP(3)Rs) are intracellular Ca(2+) channels gated by the second messenger InsP(3). Here we describe a novel approach for recording single-channel currents through recombinant InsP(3)Rs in mammalian cells that applies patch-clamp electrophysiology to nuclei isolated from COS-7 cells transiently transfected with the neuronal (SII(+)) and peripheral (SII(-)) alternatively-spliced variants of the rat type 1 InsP(3)R. Single channels that were activated by InsP(3) and inhibited by heparin were observed in 45% of patches from nuclei prepared from transfected cells overexpressing recombinant InsP(3)Rs. In contrast, nuclei from cells transfected with the vector alone had InsP(3)-dependent channel activity in only 1.5% of patches. With K(+) (140 mM) as the permeant ion, recombinant SII(+) and SII(-) channels had slope conductances of 370 pS and 390 pS, respectively. The recombinant channels were 4-fold more selective for Ca(2+) over K(+), and their open probabilities were biphasically regulated by cytoplasmic [Ca(2+)]. This approach provides a powerful new methodology to study the permeation and gating properties of recombinant mammalian InsP(3)Rs in a native mammalian membrane environment at the single-channel level.  相似文献   

14.
In this study we describe the expression and function of the two rat type-1 inositol 1,4,5-trisphosphate receptor (InsP3R) ligand binding domain splice variants (SI+/-/SII+). Receptor protein from COS-1 cells transfected with the type-1 InsP3R expression plasmids (pInsP3R-T1, pInsP3R-T1ALT) or control DNA were incorporated into planar lipid bilayers and the single channel properties of the recombinant receptors were defined. The unitary conductance of the two splice variants were approximately 290 pS with Cs+ as charge carrier and approximately 65 pS with Ca2+ as charge carrier. Both InsP3R expression products consistently behaved like those of the native type-1 receptor isoform isolated from cerebellum in terms of their InsP3, Ca2+, and heparin sensitivity. An InsP3 receptor ligand binding domain truncation lacking the 310 amino-terminal amino acids (pInsP3R-DeltaT1ALT) formed tetrameric complexes but failed to bind InsP3 with high affinity, and did not form functional Ca2+ channels when reconstituted in lipid bilayers. These data suggest that 1) the ligand binding alternative splice site is functionally inert in terms of InsP3 binding and single channel function, and 2) the single channel properties of the expressed recombinant type-1 channel are essentially identical to those of the native channel. This work establishes a foundation from which molecular/biophysical approaches can be used to define the structure-function properties of the InsP3 receptor channel family.  相似文献   

15.
Inositol 1,4,5-trisphosphate (InsP(3)) mobilizes intracellular Ca(2+) by binding to its receptor (InsP(3)R), an endoplasmic reticulum-localized Ca(2+) release channel. Patch clamp electrophysiology of Xenopus oocyte nuclei was used to study the effects of cytoplasmic ATP concentration on the cytoplasmic Ca(2+) ([Ca(2+)](i)) dependence of single type 1 InsP(3)R channels in native endoplasmic reticulum membrane. Cytoplasmic ATP free-acid ([ATP](i)), but not the MgATP complex, activated gating of the InsP(3)-liganded InsP(3)R, by stabilizing open channel state(s) and destabilizing the closed state(s). Activation was associated with a reduction of the half-maximal activating [Ca(2+)](i) from 500 +/- 50 nM in 0 [ATP](i) to 29 +/- 4 nM in 9.5 mM [ATP](i), with apparent ATP affinity = 0.27 +/- 0.04 mM, similar to in vivo concentrations. In contrast, ATP was without effect on maximum open probability or the Hill coefficient for Ca(2+) activation. Thus, ATP enhances gating of the InsP(3)R by allosteric regulation of the Ca(2+) sensitivity of the Ca(2+) activation sites of the channel. By regulating the Ca(2+)-induced Ca(2+) release properties of the InsP(3)R, ATP may play an important role in shaping cytoplasmic Ca(2+) signals, possibly linking cell metabolic state to important Ca(2+)-dependent processes.  相似文献   

16.
mRNA and protein analyses have previously shown that the diaphragm expresses two ryanodine receptor isoforms: RyR1 and RyR3. RyR1 is the main Ca2+-releasing pathway in this muscle type. We now report the conducting, gating, and immunological properties of the native and purified forms of the less abundant RyR3 channel. The conductance of this native Ca2+-release channel was 330 pS in 50 mM/250 mM trans/cis CsCH3SO3. It was activated by Ca2+ concentrations of 1-1000 microM, and did not inactivate at mM concentrations of Ca2+. Both isoforms were purified by either a sucrose density gradient or immunoprecipitation as > 450 kDa proteins on SDS-PAGE. Western blot analysis confirmed the presence of RyR1 and RyR3, which displayed conductances of 740 +/- 30 and 800 +/- 25 pS, respectively, in 250 mM KCl. We thus provide evidence that one form of the diaphragm SR Ca2+-release channels may be classified as RyR3, with gating properties different from those of the well-characterized RyR1 and RyR2 isoforms.  相似文献   

17.
The inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) is a ligand-gated intracellular Ca(2+) release channel that plays a central role in modulating cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)). The fungal metabolite adenophostin A (AdA) is a potent agonist of the InsP(3)R that is structurally different from InsP(3) and elicits distinct calcium signals in cells. We have investigated the effects of AdA and its analogues on single-channel activities of the InsP(3)R in the outer membrane of isolated Xenopus laevis oocyte nuclei. InsP(3)R activated by either AdA or InsP(3) have identical channel conductance properties. Furthermore, AdA, like InsP(3), activates the channel by tuning Ca(2+) inhibition of gating. However, gating of the AdA-liganded InsP(3)R has a critical dependence on cytoplasmic ATP free acid concentration not observed for InsP(3)-liganded channels. Channel gating activated by AdA is indistinguishable from that elicited by InsP(3) in the presence of 0.5 mM ATP, although the functional affinity of the channel is 60-fold higher for AdA. However, in the absence of ATP, gating kinetics of AdA-liganded InsP(3)R were very different. Channel open time was reduced by 50%, resulting in substantially lower maximum open probability than channels activated by AdA in the presence of ATP, or by InsP(3) in the presence or absence of ATP. Also, the higher functional affinity of InsP(3)R for AdA than for InsP(3) is nearly abolished in the absence of ATP. Low affinity AdA analogues furanophostin and ribophostin activated InsP(3)R channels with gating properties similar to those of AdA. These results provide novel insights for interpretations of observed effects of AdA on calcium signaling, including the mechanisms that determine the durations of elementary Ca(2+) release events in cells. Comparisons of single-channel gating kinetics of the InsP(3)R activated by InsP(3), AdA, and its analogues also identify molecular elements in InsP(3)R ligands that contribute to binding and activation of channel gating.  相似文献   

18.
Deiters' cells function as supporting cells for the sensory-motor outer hair cells of the mammalian cochlea and are interconnected by gap junctions. Here the electrical and Ca2+ responses of Deiters' cells evoked by purinergic stimulation were investigated in the organ of Corti, the auditory sensory epithelium. Adenosine 59-triphosphate (ATP, 50-100 microM) applied focally by pressure increased the intracellular free Ca2+ concentration ([Ca2+]i). At the same time ATP evoked an early inward current that was followed by an outward component, reflecting a sustained Ca2+-dependent reduction of the pre-stimulus offset current. These responses were maintained when Ca2+ was removed from the extracellular medium (0 [Ca2+]o), indicating a contribution to Ca2+ signalling from P2Y metabotropic receptors. UV photolysis of caged inositol 1,4,5-triphosphate (InsP3, 16 microM) produced Ca2+ responses similar to those evoked by exogenous ATP, accompanied by reduction of the offset current. In Deiters' cells uncoupled by octanol (1mM), ATP activated only the early inward current, suggesting that functional gap junctions are required in the late phase of the current responses. Following the delivery of UV flashes to pairs of Deiters' cells loaded with caged InsP3, the electrical coupling ratio (CR), monitored by double patch-clamp recordings, was strongly attenuated. These data support the idea that, by promoting inflow of cations and by controlling gap-junction conductance in a Ca2+-and InsP3-dependent way, ATP might serve a protective role in the cochlea.  相似文献   

19.
A patch-clamp study of histamine-secreting cells   总被引:9,自引:2,他引:7       下载免费PDF全文
The ionic conductances in rat basophilic leukemia cells (RBL-2H3) and rat peritoneal mast cells were investigated using the patch-clamp technique. These two cell types were found to have different electrophysiological properties in the resting state. The only significant conductance of RBL-2H3 cells was a K+-selective inward rectifier. The single channel conductance at room temperature increased from 2-3 pS at 2.8 mM external K+ to 26 pS at 130 mM K+. This conductance, which appeared to determine the resting potential, could be blocked by Na+ and Ba2+ in a voltage-dependent manner. Rat peritoneal mast cells had a whole-cell conductance of only 10-30 pS, and the resting potential was close to zero. Sometimes discrete openings of channels were observed in the whole-cell configuration. When the Ca2+ concentration on the cytoplasmic side of the membrane was elevated, two types of channels with poor ion specificity appeared. A cation channel, observed at a Ca2+ concentration of approximately 1 microM, had a unit conductance of 30 pS. The other channel, activated at several hundred micromolar Ca2+, was anion selective and had a unit conductance of approximately 380 pS in normal Ringer solution and a bell-shaped voltage dependence. Antigenic stimulation did not cause significant changes in the ionic conductances in either cell type, which suggests that these cells use a mechanism different from ionic currents in stimulus-secretion coupling.  相似文献   

20.
ATP enhances Ca(2+) release from inositol (1,4,5)-trisphosphate receptors (InsP(3)R). However, the three isoforms of InsP(3)R are reported to respond to ATP with differing sensitivities. Ca(2+) release through InsP(3)R1 is positively regulated at lower ATP concentrations than InsP(3)R3, and InsP(3)R2 has been reported to be insensitive to ATP modulation. We have reexamined these differences by studying the effects of ATP on InsP(3)R2 and InsP(3)R3 expressed in isolation on a null background in DT40 InsP(3)R knockout cells. We report that the Ca(2+)-releasing activity as well as the single channel open probability of InsP(3)R2 was enhanced by ATP, but only at submaximal InsP(3) levels. Further, InsP(3)R2 was more sensitive to ATP modulation than InsP(3)R3 under similar experimental conditions. Mutations in the ATPB sites of InsP(3)R2 and InsP(3)R3 were generated, and the functional consequences of these mutations were tested. Surprisingly, mutation of the ATPB site in InsP(3)R3 had no effect on ATP modulation, suggesting an additional locus for the effects of ATP on this isoform. In contrast, ablation of the ATPB site of InsP(3)R2 eliminated the enhancing effects of ATP. Furthermore, this mutation had profound effects on the patterns of intracellular calcium signals, providing evidence for the physiological significance of ATP binding to InsP(3)R2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号