首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
外生菌根菌与森林树木的相互关系   总被引:23,自引:2,他引:23  
生态系统的每个过程都伴随着各种微生物的活动,其中最重要的功能群之一是菌根真菌(菌根菌)。一般认为,菌根菌是自然界多数植物生存最基本的组成部分,陆地上约90%以上的高等植物都具有菌根菌。这些菌类的菌丝体与植物根系结合形成菌根,使植物生长成为可能,使不同种类植物的根系联在一起。根据菌根菌入侵植物根系的方式及菌根的形态特征,菌根可分为外生菌根、内生菌根和内外生菌根3组共7种类型。外生菌根主要出现在松科、桦木科、壳斗科等树种的森林生态系统中,在根系表面形成菌丝鞘,部分菌丝进入根系皮层细胞间隙形成哈氏网表面。菌根菌剂在森林经营中得到广泛地应用。外生菌根菌对森林树木的作用可归纳为:1)促进造林或育苗成活与生长;2)提高森林生态系统中植物的多样性、稳定性和生产力;3)对森林生态系统的综合效应,主要表现在增加植物一土壤联结,改善土壤结构,促进土壤微生物,增强植物器官的功能;4)抗拮植物根部病害病原菌等。树木与菌根菌相互关系研究主要包括:1)菌根共生的机理;2)菌根菌在退化森林生态系统恢复与改造中的作用;3)菌根菌的分布格局与森林生态系统服务功能的关系;4)菌根菌对森林生态系统的综合效应,如菌根菌与森林植物群落结构、物种多样性以及森林系统稳定性和生产力的研究。  相似文献   

2.
Arbuscular mycorrhizal (AM) symbiosis is a widespread mutualism formed between vascular plants and fungi of the Glomeromycota. In this endosymbiosis, fungal hyphae enter the roots, growing through epidermal cells to the cortex where they establish differentiated hyphae called arbuscules in the cortical cells. Reprogramming of the plant epidermal and cortical cells occurs to enable intracellular growth of the fungal symbiont; however, the plant genes underlying this process are largely unknown. Here, through the use of RNAi, we demonstrate that the expression of a Medicago truncatula gene named Vapyrin is essential for arbuscule formation, and also for efficient epidermal penetration by AM fungi. Vapyrin is induced transiently in the epidermis coincident with hyphal penetration, and then in the cortex during arbuscule formation. The Vapyrin protein is cytoplasmic, and in cells containing AM fungal hyphae, the protein accumulates in small puncta that move through the cytoplasm. Vapyrin is a novel protein composed of two domains that mediate protein–protein interactions: an N‐terminal VAMP‐associated protein (VAP)/major sperm protein (MSP) domain and a C‐terminal ankyrin‐repeat domain. Putative Vapyrin orthologs exist widely in the plant kingdom, but not in Arabidopsis, or in non‐plant species. The data suggest a role for Vapyrin in cellular remodeling to support the intracellular development of fungal hyphae during AM symbiosis.  相似文献   

3.
Arbuscular mycorrhiza (AM) fungi form nutrient‐acquiring symbioses with the majority of higher plants. Nutrient exchange occurs via arbuscules, highly branched hyphal structures that are formed within root cortical cells. With a view to identifying host genes involved in AM development, we isolated Lotus japonicus AM‐defective mutants via a microscopic screen of an ethyl methanesulfonate‐mutagenized population. A standardized mapping procedure was developed that facilitated positioning of the defective loci on the genetic map of L. japonicus, and, in five cases, allowed identification of mutants of known symbiotic genes. Two additional mutants representing independent loci did not form mature arbuscules during symbiosis with two divergent AM fungal species, but exhibited signs of premature arbuscule arrest or senescence. Marker gene expression patterns indicated that the two mutants are affected in distinct steps of arbuscule development. Both mutants formed wild‐type‐like root nodules upon inoculation with Mesorhizobium loti, indicating that the mutated loci are essential during AM but not during root nodule symbiosis.  相似文献   

4.
To investigate the specificity of the symbiotic relationship between Cymbidium plants and their mycorrhiza fungi, thirty mycorrhiza fungi were isolated from roots of six terrestrial Cymbidium species. The internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA) were amplified by polymerase chain reaction (PCR) with universal fungal primers ITS1/ITS4. All fungal strains isolated from natural roots of orchids were inoculated into the rhizomes of in vitro Cymbidium goeringii. Phylogenetic analysis indicated fungal isolates of different cluster could be obtained from a special terrestrial Cymbidium species. Observation of light microscope and scanning electron microscope showed that fungi entered the cortical tissue by destroying cell wall of epidermal cells, where they formed hyphal knots in the cortical cells and were digested gradually. A large number of small protuberances were visible on cross sections of the rhizome. There was no strict inter‐species specificity between the isolated mycorrhiza fungi and terrestrial Cymbidium.  相似文献   

5.
Recent developments in the study of orchid mycorrhiza   总被引:21,自引:0,他引:21  
Rasmussen  Hanne N. 《Plant and Soil》2002,244(1-2):149-163
Orchids are mycoheterotrophic during their seedling stage and in many species the dependency on fungi as a carbohydrate source is prolonged into adulthood. The mycobionts in orchid mycorrhiza belong in at least 5 major taxonomic groups of basidiomycetes. Traditional records have mainly focused on saprotrophic mycobionts but the participation of both ectomycorrhizal and parasitic fungi in orchid mycorrhiza has been corroborated. There is an increasing evidence of specific relationships between orchids and fungi, though usually not on a species-to-species level. Physiological compatibility demonstrated under artificial conditions, as in vitro, may be much broader, however. Recent development of field sowing techniques has improved the possibilities of evaluating orchid-fungal relations in an ecological context. Although the general nutrient flow in orchid mycorrhiza is well known, some questions remain regarding breakdown processes of fungi within orchid tissues, especially the ptyophagic syndrome that has recently been illustrated at the ultrastructural level for the first time.  相似文献   

6.
利用双重培养技术,使丛枝菌根真菌GigasporamaFgarita侵染转移RiT-DNA胡萝卜根器官,建立共生联合体。菌丝对根器官的入侵、在根内的分布、原生质在菌丝内的双向流动、根外辅助细胞形成、菌丝的愈伤现象及孢子的产生、发育和再发芽的形态特征。所形成的形态构造对植物的养分吸收和运输有重要意义。  相似文献   

7.
Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts living in the roots of 80% of land plant species, and developing extensive, below-ground extraradical hyphae fundamental for the uptake of soil nutrients and their transfer to host plants. Since AM fungi have a wide host range, they are able to colonize and interconnect contiguous plants by means of hyphae extending from one root system to another. Such hyphae may fuse due to the widespread occurrence of anastomoses, whose formation depends on a highly regulated mechanism of self recognition. Here, we examine evidences of self recognition and non-self incompatibility in hyphal networks formed by AM fungi and discuss recent results showing that the root systems of plants belonging to different species, genera and families may be connected by means of anastomosis formation between extraradical mycorrhizal networks, which can create indefinitely large numbers of belowground fungal linkages within plant communities.Key Words: arbuscular mycorrhizal symbiosis, extraradical mycelium, anastomosis, plant interconnectedness, self recognition, non-self incompatibility, mycorrhizal networks  相似文献   

8.
Seedlings of the myco-heterotrophic orchid Corallorhiza trifida which had been germinated in the field in mesh bags developed hyphal links and mycorrhizas with Betula pendula and Salix repens , but not with Pinus sylvestris , when transplanted into soil microcosms. The fungus connecting the myco-heterotroph to Betula and Salix formed endomycorrhiza in the orchid with typical pelotons, but formed ectomycorrhizas with the autotrophs. The orchid plants, when linked to Betula and Salix by fungal hyphae, gained 6–14% in weight over 25–28 wk. In microcosms supporting P. sylvestris , and in control microcosms which lacked autotrophs, the Corallorhiza plants lost 13% of their weight over the same period. In the course of the 28-wk experimental period new Corallorhiza seedlings, in addition to those added as part of the experiment, appeared in the microcosms containing Salix and Betula but not in the Pinus microcosms. Shoots of Betula and Salix plants grown in association with Corallorhiza were fed with 14CO2, and the movement of the isotope was subsequently traced by a combination of digital autoradiography and tissue oxidation. Direct transfer of C from both autotrophs to the myco-heterotroph occurred in all cases where the associates had become connected by a shared fungal symbiont. Orchid seedlings lacking these hyphal connections, introduced to the microcosms as controls immediately before isotope feeding, failed to assimilate significant amounts of C. The results provide the first experimental confirmation that growth of Corallorhiza trifida can be sustained by supply of C received directly from an autotrophic partner through linked fungal mycelia.  相似文献   

9.
10.
In the mycorrhizal symbiosis, plants exchange photosynthates for mineral nutrients acquired by fungi from the soil. This mutualistic arrangement has been subverted by hundreds of mycorrhizal plant species that lack the ability to photosynthesize. The most numerous examples of this behaviour are found in the largest plant family, the Orchidaceae. Although these non-photosynthetic orchid species are known to be highly specialized exploiters of the ectomycorrhizal symbiosis, photosynthetic orchids are thought to use free-living saprophytic, or pathogenic, fungal lineages. However, we present evidence that putatively photosynthetic orchids from five species which grow in the understorey of forests: (i) form mycorrhizas with ectomycorrhizal fungi of forest trees; and (ii) have stable isotope signatures indicating distinctive pathways for nitrogen and carbon acquisition approaching those of non-photosynthetic orchids that associate with ectomycorrhizal fungi of forest trees. These findings represent a major shift in our understanding of both orchid ecology and evolution because they explain how orchids can thrive in low-irradiance niches and they show that a shift to exploiting ectomycorrhizal fungi precedes viable losses of photosynthetic ability in orchid lineages.  相似文献   

11.
Most terrestrial plants live in mutualistic symbiosis with root-infecting mycorrhizal fungi. This association requires a molecular dialogue between the two partners. However, the nature of the chemical signals that induce hyphal differentiation are not well characterized and the mechanisms for signal reception are still unknown. In addition to its role in ammonium scavenging, the Mep2 protein from Saccharomyces cerevisiae has been proposed to act as an ammonium sensor that is essential for pseudohyphal differentiation in response to ammonium limitation. We propose that the high-affinity ammonium transporters from mycorrhizal fungi act in a similar manner to sense the environment and induce, via as-yet-unidentified signal transduction cascades, the switch in the mode of fungal growth observed during the formation of mycorrhiza.  相似文献   

12.
兰科菌根真菌研究方法的概述   总被引:1,自引:0,他引:1  
兰科植物资源在全球分布广泛,其中有许多是重要的药用植物和名贵的珍稀花卉,由于具有较高的商业价值,受到各界人士的广泛关注。兰科植物生长习性的特殊性导致其在自然状态下繁殖率极低,因此难以满足市场的广泛需求。近年研究表明,几乎所有兰科植物都能与相应的菌根真菌建立共生关系,并且必须依赖于这些内生真菌才能完成其整个生活史。因而对菌根真菌在提高兰科植物生长速度和繁殖能力过程中机制的研究以及将研究成果运用于工业化育苗中将是缓解兰科植物市场供求紧张问题的关键。通过对近几年有关天麻和铁皮石斛等兰科植物的问题研究中所采用的研究方法加以阐述,以期对今后兰科菌根真菌的研究提供一定的参考。  相似文献   

13.
We demonstrated that "orchid mycorrhiza," a specialized mycorrhizal type, appeared in the common ancestor of the largest plant family Orchidaceae and that the fungal partner shifted from Glomeromycota to a particular clade of Basidiomycota in association with this character evolution. Several unique mycorrhizal characteristics may have contributed to the diversification of the family. However, the origin of orchid mycorrhiza and the diversity of mycobionts across orchid lineages still remain obscure. In this study, we investigated the mycorrhizae of five Apostasia taxa, members of the earliest-diverging clade of Orchidaceae. The results of molecular identification using nrDNA ITS and LSU regions showed that Apostasia mycorrhizal fungi belong to families Botryobasidiaceae and Ceratobasidiaceae, which fall within the order Cantharellales of Basidiomycota. Most major clades in Orchidaceae also form mycorrhizae with members of Cantharellales, while the sister group and other closely related groups to Orchidaceae (i.e., Asparagales except for orchids and the "commelinid" families) ubiquitously form symbioses with Glomeromycota to form arbuscular mycorrhizae. This pattern of symbiosis indicates that a major shift in fungal partner occurred in the common ancestor of the Orchidaceae.  相似文献   

14.
Nitrogen (N) capture by arbuscular mycorrhizal (AM) fungi from organic material is a recently discovered phenomenon. This study investigated the ability of two Glomus species to transfer N from organic material to host plants and examined whether the ability to capture N is related to fungal hyphal growth. Experimental microcosms had two compartments; these contained either a single plant of Plantago lanceolata inoculated with Glomus hoi or Glomus intraradices, or a patch of dried shoot material labelled with (15)N and (13)carbon (C). In one treatment, hyphae, but not roots, were allowed access to the patch; in the other treatment, access by both hyphae and roots was prevented. When allowed, fungi proliferated in the patch and captured N but not C, although G. intraradices transferred more N than G. hoi to the plant. Plants colonized with G. intraradices had a higher concentration of N than controls. Up to one-third of the patch N was captured by the AM fungi and transferred to the plant, while c. 20% of plant N may have been patch derived. These findings indicate that uptake from organic N could be important in AM symbiosis for both plant and fungal partners and that some AM fungi may acquire inorganic N from organic sources.  相似文献   

15.
Tropical orchids constitute the greater part of orchid diversity, but little is known about their obligate mycorrhizal relationships. The specificity of these interactions and associated fungal distributions could influence orchid distributions and diversity. We investigated the mycorrhizal specificity of the tropical epiphytic orchid Ionopsis utricularioides across an extensive geographical range. DNA ITS sequence variation was surveyed in both plants and mycorrhizal fungi. Phylogeographic relationships were estimated for the mycorrhizal fungi. Orchid functional outcomes were determined through in vitro seed germination and seedling growth with a broad phylogenetic representation of fungi. Most fungal isolates derived from one clade of Ceratobasidium (anamorphs assignable to Ceratorhiza), with 78% within a narrower phylogenetic group, clade B. No correlation was found between the distributions of orchid and fungal genotypes. All fungal isolates significantly enhanced seed germination, while fungi in clade B significantly enhanced seedling growth. These results show that I. utricularioides associates with a phylogenetically narrow, effective fungal clade over a broad distribution. This preference for a widespread mycorrhizae may partly explain the ample distribution and abundance of I. utricularioides and contrasts with local mycorrhizal diversification seen in some nonphotosynthetic orchids. Enhanced orchid function with a particular fungal subclade suggests mycorrhizal specificity can increase orchid fitness.  相似文献   

16.
 This paper reports the changes that occur in the microtubule cytoskeleton of cells of orchid protocorms during infection by a compatible mycorrhizal fungus. In cells of protocorms uninfected by a mycorrhizal fungus, microtubules occurred in regular arrays. In contrast, the cells of orchid protocorms with established mycorrhizas appeared to contain irregularly arranged microtubules. Double labelling with anti-β-tubulin and rhodamine-labelled wheat-germ agglutinin demonstrated that these irregularly arranged microtubules occurred only inside fungal hyphae and that microtubules were absent from host cells containing mycorrhizal fungi. Microtubule depolymerisation was shown to occur at the early stages of fungal infection. There was neither loss of nor obvious organisational change in microtubules in cells adjacent to others containing fungal hyphae. Electron microscopy confirmed the presence of an interfacial matrix between the host plasma membrane and the hyphal wall. The loss of microtubules from cells infected by mycorrhizal fungi suggests that an intact host microtubule cytoskeleton is not necessary for the formation of the interfacial matrix in mycorrhizas of orchid protocorms. Accepted: 9 November 1995  相似文献   

17.
18.
王玮  赵方贵  侯丽霞  车永梅  刘新 《生态学报》2013,33(23):7583-7589
以烟草(Nicotiana tabacum,品种CF90NF)为材料,利用分光光度法和荧光显微技术结合药理学实验,探讨在AM真菌摩西球囊霉(Glomus mosseae,G.m)与烟草共生过程中一氧化氮(nitric oxide, NO)的作用。结果表明,烟草侧根中含有一定水平的内源NO,苗期接种G.m 10天后,烟草根系NO含量显著增加,侧根中的NO荧光强度也在接种后10天达到最强;一定浓度的NO供体硝普钠(sodium nitroprusside,SNP)能促进G.m对烟草的侵染,而NO的清除剂2-4,4,5,5-苯-四甲基咪唑-1-氧-3-氧化物( 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxidepotassium salt,cPTIO)可明显减弱侧根和菌丝中的NO的荧光强度,降低AM真菌的侵染率,表明NO参与G.m与烟草的共生过程;在G.m与烟草的共生过程中,烟草根系硝酸还原酶(nitrate reductase,NR)活性与Nia-1的表达量明显升高,且NR的抑制剂钨酸钠(sodium tungstate,Na2WO4)可以降低烟草侧根中的荧光强度,但对菌丝中的NO的荧光强度无明显影响。由此推测,来自根系NR途径的NO参与AM真菌与烟草的共生过程,菌丝中可能存在其他来源的NO。  相似文献   

19.
Orchids typically depend on fungi for establishment from seeds, forming mycorrhizal associations with basidiomycete fungal partners in the polyphyletic group rhizoctonia from early stages of germination, sometimes with very high specificity. This has raised important questions about the roles of plant and fungal phylogenetics, and their habitat preferences, in controlling which fungi associate with which plants. In this issue of Molecular Ecology, Martos et al. (2012) report the largest network analysis to date for orchids and their mycorrhizal fungi, sampling a total of over 450 plants from nearly half the 150 tropical orchid species on Reunion Island, encompassing its main terrestrial and epiphytic orchid genera. The authors found a total of 95 operational taxonomic units of mycorrhizal fungi and investigated the architecture and nestedness of their bipartite networks with 73 orchid species. The most striking finding was a major ecological barrier between above‐ and belowground mycorrhizal fungal networks, despite both epiphytic and terrestrial orchids often associating with closely related taxa across all three major lineages of rhizoctonia fungi. The fungal partnerships of the epiphytes and terrestrial species involved a diversity of fungal taxa in a modular network architecture, with only about one in ten mycorrhizal fungi partnering orchids in both groups. In contrast, plant and fungal phylogenetics had weak or no effects on the network. This highlights the power of recently developed ecological network analyses to give new insights into controls on plant–fungal symbioses and raises exciting new hypotheses about the differences in properties and functioning of mycorrhiza in epiphytic and terrestrial orchids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号