首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Active State of Mammalian Skeletal Muscle   总被引:1,自引:0,他引:1  
A new technique is proposed for computing the active state of striated muscle, based on the three component model of Fenn and Marsh (8) and of Hill (7). The method permits calculation of the time course of the active state from its peak to the time at which maximum isometric twitch tension is reached. The intormation required for the calculation can be obtained from a single muscle without moving it from its mount in the lever system. The time course of the active state proved to be a function of the length of the muscle. This length dependency led to the predictions that (a) the length at which maximum force is developed during tetanic stimulation is different from that at which it is developed during a twitch, and (b) the tetanus-twitch tension ratio is a function of length. Both predictions were verified in a series of experiments on the rat gracilis anticus muscle at 17.5°C.  相似文献   

2.
The rise time of an isometric twitch, the tetanic tension, the twitch tetanus ratio, the frequency-tension relationship, and the height of the MUAP (motor unit action potential) were measured in fast twitch (medial gastrocnemius) and slow twitch (soleus) muscles of the cat immediately before, in the middle, and immediately after fatiguing isometric contractions at tensions of 30, 50 and 80% of each muscle's initial strength (tetanic tension recorded from the unfatigued muscle). Although the twitch-tetanus ratio was always less for the soleus than for the medial gastrocnemius muscles, the twitch-tetanus ratio for any one muscle was constant throughout the duration of fatiguing isometric contractions at any of the tensions examined. In contrast, the twitch tension and tetanic tension of the muscles were both less after the contractions, the largest reduction occurring for both muscles during contractions sustained at the lowest isometric tensions. The time to peak tension of an isometric twitch was prolonged for both muscles following the contractions. This was associated with a corresponding shift in the frequency tension relationship such that at the point of muscular fatigue, the muscles tetanized at lower frequencies of stimulation than did the unfatigued muscle. In contrast, the amplitude of the MUAP showed only a modest reduction throughout the duration of the fatiguing contractions.  相似文献   

3.
The effects of changing muscle length on the mechanical properties of 89 motor units from adult cat medial gastrocnemius have been studied in eight experiments. Few differences were found between the effects of length on tetanic tension, twitch tension, twitch-tetanus ratio, twitch contraction time, twitch half relaxation time, rate of force development and electrical activity for fast contracting (twitch contraction time less than or equal to 45 msec) and slowly contracting (greater than 45 msec) units. Those differences that did appear did not persist when these two groups were matched by tetanic tension. It is concluded that the biophysical mechanisms responsible for the changes in mechanical and electrical properties with length must be similar for fast and slow twitch units and not related to potential differences in their muscle fiber type. The effects of changing muscle length on the mechanical properties of the eight whole muscles suggest that changes in force output with length are of minor importance during normal movements as the muscle is found to be electrically active over a relatively narrow range of lengths close to the optimum length for tetanus of the whole muscle. The very shortest muscle lengths at which there is only minimal force development are not used in natural movements, while the declining limb of the length tension curve is at muscle lengths beyond the maximum in situ length.  相似文献   

4.
The relation between sarcomere length, tension and time course of tension development in twitch and tetanic contractions at 20 degrees C was determined for isolated fibres from the semitendinosus muscle of the frog (Rana esculenta). In twenty fibres at about 2.15 micron sarcomere length, the peak twitch tension, the maximum tetanic tension and the twitch/tetanus ratio ranged, respectively, from 0.22 to 1.6 kg/cm2, from 2.13 o 3.96 kg/cm2 an from 0.07 to 0.53. The peak twitch tension was found to be: i) directly correlated with the twitch/tetanus ratio and the time to the peak of the first derivative of the twitch tension, ii) inversely correlated with the time to the peak of the first derivative of tetanic tension. No significant correlation was found between the maximal tetanic tension and the peak twitch tension or the twitch/tetanus ratio. Peak twitch tension and twitch/tetanus ratio were not correlated with the fibre cross-sectional area which ranged from 1.052 to 6,283 micron2. Sarcomere length-tension curves for twitch and tetanic isometric contractions at 20 degrees C were determined in twelve fibres. Increases in sarcomere length from about 2.15 to 2.85 micron produced, depending on the peak twitch tension or the twitch/tetanus ratio at about 2.15 micron, either decrease and no change or increase in peak twitch tension, but constantly enhanced the twitch/tetanus ratio and the degree of this potentiation was inversely correlated with the twitch/tetanus ratio at 2.15 micron. Increase in sarcomere length above 2.15 micron did not alter the course of the early development of twitch and tetanic tensions, reduced considerably the variation in peak twitch tension and twitch/tetanus ratio, without altering that of tetanic tension and swamped the correlation between the peak twitch tension and the time to peak of the differentiated twitch tension. However, the peak twitch tension at about 2.85 micron resulted to be directly correlated with the peak twitch tension at about 2.15 micron and in addition the relative length-dependent change in the time of the peak of the first derivative of the twitch tension resulted to be directly correlated with the relative length-dependent change in the peak twitch tension. It is concluded that both the duration of the active state and the rate factors of activation contribute to the determining of the large variation in peak twitch tension at about 2.15 micron, whereas the length-dependent increase in twitch/tetanus ratio appears to be mainly determined by prolongation of the active state duration.  相似文献   

5.
In order to clarify the delay between muscular structural changes and mechanical responses, the intensity changes of the equatorial and myosin layer-line reflections were studied by a time-resolved X-ray diffraction technique using synchrotron radiation. The muscle was stimulated at 12-13 degrees C by two successive stimuli at an interval (80-100 ms) during which the second twitch started while tension was still being exerted by the muscle. At the first twitch, the intensity changes of the 1.0 and 1.1 equatorial reflections reached 65 and 200% of the resting values, and further changes to 55 and 220% were seen at the second twitch, respectively. Although the second twitch decreased not only the time to peak tension but also that to the maximum intensity changes of the equatorial reflections (in both cases, about 15 ms), the delay (about 20 ms) between the intensity changes and the development of tension at the first twitch were still observed at the second twitch. On the other hand, the intensities of the 42.9 nm off-meridional and the 21.5 nm meridional myosin reflections decreased at the first twitch to the levels found when a muscle was isometrically tetanized, and no further decrease in their intensities was observed at the second twitch. These results indicate that a certain period of time is necessary for myosin heads to contribute to tension development after their arrival in the vicinity of the thin filaments during contraction.  相似文献   

6.
Some of the factors which influence the development of tension in cat tenuissimus muscle were studied quantitatively. Under isometric conditions, it was shown that the dynamic properties of the relationship between the tension of the muscle and its electrical stimulation depend on the mean rate of stimulation. This non-linear effect cannot be explained on the basis of the dependence of muscle tension on instantaneous rate of stimulation since the tension due to a stimulus following closely a previous stimulus is augmented, but the time course of the twitch response is unaltered. The interaction between the tension due to active contraction and that due to the viscoelastic properties of the muscle was investigated by independently varying muscle length and the rate of stimulation. Within the limits of resolution of the data, it was concluded that these two components of tension are additive and that muscle stiffness is related to the instantaneous tension of the muscle.  相似文献   

7.
The course of active state in heart muscle has been analyzed using a modified quick release method. The onset of maximum active state was found to be delayed, requiring 110-500 msec from time of stimulation, while the time to peak isometric tension required 250-650 msec. Further, the time from stimulation to peak tension was linearly related to the time required to establish maximum intensity of active state as well as to the duration of maximum active state. The duration of maximum active state was prolonged (90-220 msec), occupying most of the latter half of the rising phase of the isometric contraction. Norepinephrine (10(-5) M) shortened the latency from electrical stimulus to mechanical response, accelerated the onset of maximum active state, increased its intensity, decreased its duration, and accelerated its rate of decline. These changes were accompanied by an increase in the rate of tension development and the tension developed while the time from stimulation to peak isometric tension was abbreviated. Similar findings were shown for strophanthidin (1 microgram/ml) although lesser decrements in the duration of maximum active state and time to peak tension were found than with norepinephrine for similar increments in the maximum intensity of active state.  相似文献   

8.
Length-force relations, both active and passive, and twitch contraction characteristics were quantified for left medial gastrocnemius muscles of four young, four adult, and four old male Wistar rats. Muscle and bundle optimum length and muscle weight were also determined and subsequently used for calculation of a number of morphological characteristics of the muscles. Fiber optimum length was derived from muscle bundle optimum length. Generally, physiological characteristics remained constant during growth. There was no change either in active tension at muscle optimum length or in active working range relative to fiber optimum length, relative passive fiber stiffness, active force relative to passive force at optimum length, twitch contraction time and twitch half relaxation time at optimum length. A number of morphological changes, however, did take place in the medial gastrocnemius muscle during growth. Fiber optimum length increased but only by about 2 mm from youth to old age, whereas muscle optimum length increased by approximately 14 mm, presumably owing to extensive hypertrophy of the muscle fibers during growth. The priority for force of the medial gastrocnemius muscle (defined as the quotient of physiological cross-sectional area of a muscle and the cubed root of its volume, a measure independent of architecture and dimensions of muscles) increased during growth. This increase indicates that during growth the muscle shifts relatively more towards force generation than towards excursion generation. These findings are discussed in view of existing scaling theories.  相似文献   

9.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   

10.
Investigation of the mechanisms of muscle adaptation requires independent control of the regulating factors. The aim of the present study was to develop a serum-free medium to culture mature single muscle fibres of Xenopus laevis. As an example, we used the culture system to study adaptation of twitch and tetanic force characteristics, number of sarcomeres in series and fibre cross-section. Fibres dissected from m. iliofibularis (n = 10) were kept in culture at a fibre mean sarcomere length of 2.3 microm in a culture medium without serum. Twitch and tetanic tension were determined daily. Before and after culture the number of sarcomeres was determined by laser diffraction and fibre cross-sectional area (CSA) was determined by microscopy. For five fibres twitch tension increased during culture and tetanic tension was stable for periods varying from 8 to 14 days ('stable fibres'), after which fibres were removed from culture for analysis. Fibre CSA and the number of sarcomeres in series remained constant during culture. Five other fibres showed a substantial reduction in twitch and tetanic tension within the first five days of culture ('unstable fibres'). After 7-9 days of culture, three of these fibres died. For two of the unstable fibres, after the substantial force reduction, twitch and tetanic tension increased again. Finally at day 14 and 18 of culture, respectively, the tensions attained values higher than their original values. For stable fibres, twitch contraction time, twitch half-relaxation time and tetanus 10%-relaxation time increased during culture. For unstable fibres these parameters fluctuated. For all fibres the stimulus threshold fluctuated during the first two days, and then remained constant, even for the fibres that were cultured for at least two weeks. It is concluded that the present culture system for mature muscle fibres allows long-term studies within a well-defined medium. Unfortunately, initial tetanic and twitch force are poor predictors of the long-term behaviour of the fibres.  相似文献   

11.
The Pattern of Activation in the Sartorius Muscle of the Frog   总被引:1,自引:0,他引:1       下载免费PDF全文
The development of isometric twitch tension has been compared with the redevelopment of isometric tension in the fully active frog sartorius muscle following release. At 0°C the rate of rise of isometric twitch tension is the same as that for the muscle in the fully active state at the same tension but not until about 40 msec. after the stimulus and then only for a few milliseconds. The rates of rise of tension in the twitch and in the redevelopment of tension in the fully active muscle appear to be nearly the same at low tensions. Substitution of nitrate for chloride in the Ringer's solution bathing the muscle retards the development of tension during the early part of the contraction phase of the twitch and the effect reaches a maximum within 3 minutes after changing the solutions. These observations have been discussed in connection with some possible patterns of activation and the hypothesis has been advanced that the rate of activation of a sarcomere is determined mainly by the rate at which the transverse component of the link between excitation and contraction is propagated inwards from the periphery to the center of the fiber. This hypothesis has been discussed in relation to others concerning the nature of excitation-contraction coupling.  相似文献   

12.
Voluntary activation of muscle is commonly quantified by comparison of the extra force added by motor nerve stimulation during a contraction [superimposed twitch (SIT)] with that produced at rest by the same stimulus (resting twitch). An inability to achieve 100% voluntary activation implies that failure to produce maximal force output from the muscle must have occurred at a site at or above the level of the motoneurons. We have used cortical stimulation to quantify voluntary activation. Here, incomplete activation implies a failure at or above the level of motor cortical output. With cortical stimulation, it is inappropriate to compare extra force evoked during a contraction with the twitch evoked in resting muscle because motor cortical and spinal cord excitability both increase with activity. However, an appropriate "resting twitch" can be estimated. We previously estimated its amplitude by extrapolation of the linear relation between SIT amplitude and voluntary torque calculated from 35 contractions of >50% maximum (Todd G, Taylor JL, and Gandevia SC. J Physiol 551: 661-671, 2003). In this study, we improved the utility of this method to enable evaluation of voluntary activation when it may be changing over time, such as during the development of fatigue, or in patients who may be unable to perform large numbers of contractions. We have reduced the number of contractions required to only three. Estimation of the resting twitch from three contractions was reliable over time with low variability. Furthermore, its reliability and variability were similar to the resting twitch estimated from 30 contractions and to that evoked by conventional motor nerve stimulation.  相似文献   

13.
The Z band in skeletal muscle has two distinct structural states--a relaxed (small square or ss) form and a maximally activated (basket weave or bw) form. We have examined by electron microscopy and optical diffraction Z lattice forms and dimensions and A band spacings in relaxed, tetanized, stretched, and stretched-and-tetanized rat soleus muscle. We have tested the independent contributions of passive load, active tension, and sarcomere length to Z band state. As the A band spacing decreased with increasing load and increasing sarcomere length in the untetanized muscles, the Z lattice remained in the ss form and the Z spacing changed only slightly. Computer-enhanced images from digitized electron micrographs showed that the ss Z lattice resisted deformation regardless of load or method of stretching. In contrast, when the muscle was tetanized at sarcomere lengths of up to 2.7 microns, the Z lattice assumed the bw form and the Z spacing was increased by 20%. Regardless of lattice form, Z spacing did not vary significantly with sarcomere length. Images from freeze-substituted preparations showed both lattice forms comparable to those in images from glutaraldehyde-fixed muscles. Thus, Z band state appears to be a function of the presence (or absence) of active tension. Our previous three-dimensional model is compatible with these observations and with the sub-structures revealed by computer-enhanced images of both lattice forms.  相似文献   

14.
The 24 h recovery pattern of contractile properties of the triceps surae muscle, following a period of muscle fatigue, was compared in physically active young (25 years, n = 10) and elderly (66 years, n = 7) men. The fatigue test protocol consisted of 10 min of intermittent submaximal 20 Hz tetani. The maximal twitch (Pt) and tetanic force at 3 frequencies (10, 20 and 50 Hz) were determined at baseline and at 15 min, 1, 4 and 24 h after fatiguing the muscle. Maximal voluntary contraction (MVC) and vertical jump (MVJ) were also assessed. The loss of force during the fatigue test was not significantly different between the young (18 +/- 13%) and elderly (22 +/- 15%). Both groups showed similar and significant reductions of Pt (15%), tetanic force (10 to 35%) and rate of force development (dp/dt) (20%) 15 min and 1 h into recovery. The loss of force was greater at the lower stimulation frequencies of 10 and 20 Hz. Time-to-peak tension was unchanged from baseline during recovery in either group. The average rate of relaxation of twitch force (-dPt/dt) was decreased (p less than 0.05) and half-relaxation time significantly increased at 15 min and 1 h in the elderly but not the young. The findings indicate that after fatiguing contractions, elderly muscle demonstrates a slower return to resting levels of the rate and time course of twitch relaxation compared to the young.  相似文献   

15.
The effect of shortening on contractile activity was studied in experiments in which shortening during the rising phase of an isotonic contraction was suddenly stopped. At the same muscle length and the same time after stimulation the rise in tension was much faster, if preceded by shortening, than during an isometric contraction, demonstrating an increase in contractile activity. In this experiment the rate of tension rise determined in various phases of contraction was proportional to the rate of isotonic shortening at the same time after stimulation. Therefore, the time course of the isotonic rising phase could be derived from the tension rise after shortening. The rate of isotonic shortening was found to be unrelated to the tension generated at various lengths and to correspond closely to the activation process induced by shortening. The length response explains differences between isotonic and isometric contractions with regard to energy release (Fenn effect) and time relations. These results extend previous work which showed that shortening during later phases of a twitch prolongs, while lengthening abbreviates contraction. Thus the length responses, which have been called shortening activation and lengthening deactivation, control activity throughout an isotonic twitch.  相似文献   

16.
The aims of the present study were to develop a mathematical model of the skeletal muscle based on the frequency transfer function, referred to as frequency response model, and to presume the relationship between the model elements and skeletal muscle contractile properties. Twitch force in elbow flexion was elicited by applying a single electrical stimulation to the motor point of biceps brachii muscles, and then analyzed visually by the Bode gain and phase diagram of the force signal. The frequency response model was represented by a frequency transfer function consisting of five basic control elements (proportional element, dead time element, and three first-order lag elements). The model element constants were estimated by best-fitting to the Bode gain and phase diagram of the twitch force signal. The proportional constant and the dead time in the frequency response model correlated significantly with the peak torque and the latency in the actual twitch force, respectively. In addition, the time constants of the three first-order lag elements in the model correlated strongly with the contraction time and the half relaxation time in the actual twitch force. The results suggested a possibility that the individual elements in the frequency response model would reflect the biochemical and biomechanical properties in the excitation–contraction coupling process of skeletal muscle.  相似文献   

17.
Small, square stretches were applied during contractions of soleus and plantaris muscles in the cat to measure muscle stiffness. The stiffness of the slow-twitch soleus muscle (but not of the fast plantaris muscle) reaches a maximum after the peak in twitch tension. Since the number of active bonds should be maximum before the peak in tension, we suggest that many bonds are in the rigor state during the falling phase of the twitch. The stiffness of the bonds in this state may be useful for prolonging the twitch in slow-twitch muscles and for maintaining a posture.  相似文献   

18.
Hydrostatic compression in glycerinated rabbit muscle fibers.   总被引:2,自引:2,他引:0       下载免费PDF全文
Glycerinated muscle fibers isolated from rabbit psoas muscle, and a number of other nonmuscle elastic fibers including glass, rubber, and collagen, were exposed to hydrostatic pressures of up to 10 MPa (100 Atm) to determine the pressure sensitivity of their isometric tension. The isometric tension of muscle fibers in the relaxed state (passive tension) was insensitive to increased pressure, whereas the muscle fiber tension in rigor state increased linearly with pressure. The tension of all other fiber types (except rubber) also increased with pressure; the rubber tension was pressure insensitive. The pressure sensitivity of rigor tension was 2.3 kN/m2/MPa and, in comparison with force/extension relation determined at atmospheric pressure, the hydrostatic compression in rigor muscle fibers was estimated to be 0.03% Lo/MPa. As reported previously, the active muscle fiber tension is depressed by increased pressure. The possible underlying basis of the different pressure-dependent tension behavior in relaxed, rigor, and active muscle is discussed.  相似文献   

19.
Summary Quantitative ultrastructural and physiological parameters were investigated in three types of muscle fibres ofPerca fluviatilis: white fibres from the m. levator operculi anterior, pink (intermediate) fibres of the m. hyohyoideus and deep red fibres of the m. levator operculi anterior. Times to peak tension and half relaxation times of isometric twitches increased in the mentioned order. The extent of contact between the T system and the sarcoplasmic reticulum and the relative volume and surface area of the terminal cisternae showed an inverse relation with the time to peak tension of the twitch. The maximal isometric tetanic force per unit cross section area was similar for all three investigated types. The inverse relation between the time to peak tension of the twitch and the relative length of contact between T system and SR is in agreement with data obtained for fast- and slow twitch muscle fibres of the carp,Cyprinus carpio L.Abbreviations LOPA musculus levator operculi anterior - HH musculus hyohyoideus - SR Sarcoplasmic reticulum  相似文献   

20.
The aim was to study the methodological aspects of the muscle twitch interpolation technique in estimating the maximal force of contraction in the quadriceps muscle utilizing commercial muscle testing equipment. Six healthy subjects participated in seven sets of experiments testing the effects on twitch size of potentiation, time lag after potentiation, magnitude of voluntary force, stimulus amplitude, stimulus duration, angle of the knee, and angle of the hip. In addition, the consequences of submaximal potentiation on the estimation of maximal force from twitch sizes were studied in five healthy subjects. We found an increase in twitch size with increasing levels of potentiation and twitch size decreased exponentially following potentiation. We found a curvilinear relationship between twitch size and voluntary force, and these properties were more obvious when the stimulation intensity of the preload was reduced. The relationship between twitch size and force was only linear, for force levels greater than 25% of maximum. It was concluded that to achieve an accurate estimate of true maximal force of muscle contraction, it would be necessary for the subject to be able to perform at least 75% of the true maximal force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号