首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome size, complexity, and ploidy of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was determined using flow cytometry, reassociation kinetics, and genomic reconstruction. Nuclei of G. intraradices from in vitro culture, were analyzed by flow cytometry. The estimated average length of DNA per nucleus was 14.07+/-3.52 Mb. Reassociation kinetics on G. intraradices DNA indicated a haploid genome size of approximately 16.54 Mb, comprising 88.36% single copy DNA, 1.59% repetitive DNA, and 10.05% fold-back DNA. To determine ploidy, the DNA content per nucleus measured by flow cytometry was compared with the genome estimate of reassociation kinetics. G. intraradices was found to have a DNA index (DNA per nucleus per haploid genome size) of approximately 0.9, indicating that it is haploid. Genomic DNA of G. intraradices was also analyzed by genomic reconstruction using four genes (Malate synthase, RecA, Rad32, and Hsp88). Because we used flow cytometry and reassociation kinetics to reveal the genome size of G. intraradices and show that it is haploid, then a similar value for genome size should be found when using genomic reconstruction as long as the genes studied are single copy. The average genome size estimate was 15.74+/-1.69 Mb indicating that these four genes are single copy per haploid genome and per nucleus of G. intraradices. Our results show that the genome size of G. intraradices is much smaller than estimates of other AMF and that the unusually high within-spore genetic variation that is seen in this fungus cannot be due to high ploidy.  相似文献   

2.
3.
R D?rr  V A Huss 《Bio Systems》1990,24(2):145-155
Strains of 12 different species of the genus Chlorella were analyzed for amount, reiteration frequency and kinetic complexity of chromosomal DNA components by C0t analysis. The resulting C0t curves reveal at least two different DNA components consisting of single copy DNA (up to 95%) and of repetitive DNA with complexities of 4.1 x 10(3) base pairs (bp) to approximately 11.7 x 10(3) bp and a reiteration frequency of 100-760. The total amount of repetitive DNA is less than 9% of the nuclear genome and similar in all strains studied. In contrast, the total kinetic complexity varies in a wide range from 1.26 x 10(7) bp to 8.08 x 10(7) bp which is mainly due to differences in the size of single copy DNA. The genome sizes in Chlorella seem not to be correlated with biochemical and physiological characteristics and therefore are unlikely to be useful as a taxonomical marker. A comparison of thermal denaturation profiles showed that the melting points of repetitive and single copy DNA differ by approximately 7 degrees C which may result from base mismatch and/or from a distinct base composition of the repetitive DNA.  相似文献   

4.
Mismatching and the Reassociation Rate of Mouse Satellite DNA   总被引:8,自引:0,他引:8  
THE correlation between kinetic complexity and analytical complexity (genome size) established for the nucleic acids of viruses and bacteria and for the “single copy” DNA of a few higher organisms1, 2 has been widely assumed to hold also for the families of repeated sequences found in eukaryotic chromosomal DNA1, 3, 4. This assumption leads to some surprising conclusions: quite closely related species seem to differ greatly both in the proportion of the genome made up of repeated sequences and in the apparent complexity of these sequences1, 4, 5.  相似文献   

5.
Sequence organization of the soybean genome   总被引:9,自引:0,他引:9  
The total complexity of one constituent soybean (Glycine max) genome is estimated to be 1.29 . 10(9) nucleotide pairs, as determined by analysis of the reassociation kinetics of sheared (0.47 kilobase) DNA. Single copy sequences are estimated to represent from 53 to 64% of the genome by analysis of hydroxyapatite binding of repetitive DNA as a function of fragment length. From 65 to 70% of these single copy sequences have a short period interspersion with 1.11--1.36 kilobase lengths alternating with 0.3--0.4 kilobase repetitive sequence elements. The repetitive sequences of soybean DNA are interspersed both among themselves and among single copy regions of the genome.  相似文献   

6.
The nuclear genome of pearl millet has been characterized with respect to its size, buoyant density in CsCl equilibrium density gradients, melting temperature, reassociation kinetics and sequence organization. The genome size is 0.22 pg. The mol percent G + C of the DNA is calculated from the buoyant density and the melting temperature to be 44.9 and 49.7%, respectively. The reassociation kinetics of fragments of DNA 300 nucleotides long reveals three components: a rapidly renaturing fraction composed of highly repeated and/or foldback DNA, middle repetitive DNA and single copy DNA. The single copy DNA consists of 17% of the genome. 80% of the repetitive sequences are at least 5000 nucleotide pairs in length. Thermal denaturation profiles of the repetitive DNA sequences show high Tm values implying a high degree of sequence homogeneity. About half of the single copy DNA is short (750--1400 nucleotide paris) and interspersed with long repetitive DNA sequences. The remainder of the single copy sequences vary in size from 1400 to 8600 nucleotide pairs.  相似文献   

7.
Allomyces arbuscula DNA isolated from whole cells (bulk DNA) is composed of a major (alpha) and two minor components (beta & gamma) with buoyant densities in neutral CsCl corresponding to 1.721, 1.710 and 1.702 g/cm3, respectively. The DNA obtained from purified nuclei contains alpha component only. The beta component corresponds to mitochondrial DNA. The gamma component is also extra-nuclear but has not been characterized. The reassociation kinetics of sheared, bulk and nuclear DNA show that (i) 25 % bulk and 10% of nuclear DNA reanneal very rapidly and contain highly repeated sequences; (ii) moderately repeated sequences, accounting for 15% of both bulk and nuclear DNA, have a sequence complexity of approximately 7.2-10(6) daltons and are repeated about 320 times; (iii) the slow reannealing fraction accounts for about 60% of the genome and has kinetic properties similar to single copy sequences. The sequence complexity of this fraction was determined in relation to that of Escherichia coli. After a correction for the size of the repeated sequences the genome size of A. arbuscula was calculated to be 1.7-10(10) daltons.  相似文献   

8.
The complexity of rat liver poly (A)+ messenger RNA (mRNA) has been measured by analysis of the kinetics of hydridization with both complementary DNA (cDNA) and single copy DNA. The complementary DNA-poly(A)+ mRNA hybridization reaction demonstrates the existence of three abundance classes representing 18, 37, and 45% of the cDNA and 4, 290, and 24 000 different 1800-nucleotide sequences respectively. The poly(A)+ mRNA driven single copy DNA hybridization reaction reveals a single major transition accounting for 1.9% of the haploid rat genome. The kinetics of the poly(A)+ mRNA driven single copy DNA reaction suggest that approximately 45% of the mass of the mRNA population contains over 95% of the complexity. Although higher than previous estimates, the base sequence complexities of rat liver poly(A)+ mRNA measured in these two ways are in good agreement, suggesting that the technique of poly(A)+ mRNA-cDNA hybridization may be used in approximating the complexity as well as abundance of a messenger RNA population. DNA-driven cDNA reactions reveal that about 10% of rat liver poly(A)+ mRNA is transcribed from repetitive sequences in the rat genome.  相似文献   

9.
In the past two years, new data on conceptual aspects of the evolution of eukaryotic genome size have appeared, including the adaptivity of genome enlargement, the mechanisms of genome size change and the relation of genome size to organismal complexity. New data on the hypotheses of "selfish DNA" and "mutational equilibrium" have been recently obtained. A relationship is emerging between the intragenomic distribution of noncoding DNA and differential gene expression, which suggests that noncoding DNA is involved in epigenetic organization of the genome and organismal complexity. The standpoint of dynamical chaos, which integrates multilevel selection and mutation biases, may provide a framework for studying the evolution of genome size.  相似文献   

10.
Recent advances have highlighted the ubiquity of whole‐genome duplication (polyploidy) in angiosperms, although subsequent genome size change and diploidization (returning to a diploid‐like condition) are poorly understood. An excellent system to assess these processes is provided by Nicotiana section Repandae, which arose via allopolyploidy (approximately 5 million years ago) involving relatives of Nicotiana sylvestris and Nicotiana obtusifolia. Subsequent speciation in Repandae has resulted in allotetraploids with divergent genome sizes, including Nicotiana repanda and Nicotiana nudicaulis studied here, which have an estimated 23.6% genome expansion and 19.2% genome contraction from the early polyploid, respectively. Graph‐based clustering of next‐generation sequence data enabled assessment of the global genome composition of these allotetraploids and their diploid progenitors. Unexpectedly, in both allotetraploids, over 85% of sequence clusters (repetitive DNA families) had a lower abundance than predicted from their diploid relatives; a trend seen particularly in low‐copy repeats. The loss of high‐copy sequences predominantly accounts for the genome downsizing in N. nudicaulis. In contrast, N. repanda shows expansion of clusters already inherited in high copy number (mostly chromovirus‐like Ty3/Gypsy retroelements and some low‐complexity sequences), leading to much of the genome upsizing predicted. We suggest that the differential dynamics of low‐ and high‐copy sequences reveal two genomic processes that occur subsequent to allopolyploidy. The loss of low‐copy sequences, common to both allopolyploids, may reflect genome diploidization, a process that also involves loss of duplicate copies of genes and upstream regulators. In contrast, genome size divergence between allopolyploids is manifested through differential accumulation and/or deletion of high‐copy‐number sequences.  相似文献   

11.
Kinetic determination of the genome size of the pea   总被引:1,自引:1,他引:0       下载免费PDF全文
Renaturation of pea (Pisum sativum) DNA has been used to estimate the size of the pea genome and the fraction of pea DNA containing repeated DNA sequences. Pea DNA renaturation and single copy tracer renaturation indicate that the size of the pea genome is 0.5 picograms. More than 70% of pea DNA sequences are repeated from 100 to 5,000 times.  相似文献   

12.
The base composition of peanut (var. NC-17) DNA determined from thermal denaturation profiles showed an average guanine plus cystosine content of 34% which was in close approximation to 36% guanine plus cytosine calculated from the buoyant density. Buoyant density also indicated the absence of satellite DNA. The genome size, 2.0 × 109 base pairs, as determined by reassociation kinetics of the single copy DNA was close to the genome size determined by cytophotometry, 2.1 × 109 base pairs. Peanut DNA averaging 450 to 600 base pairs long, reassociated in phosphate buffer and fractionated by hydroxylapatite, indicated a DNA genome composition of 36% nonrepetitive or single copy DNA; reassociation in formamide and followed by optical methods indicated the repetitive DNA possesses highly repeated, intermediately repeated and rarely repeated components of DNA with DNA sequences repeated on the average about 38,000, 6,700, and 200 times each. Different criteria of reassociation in formamide revealed further subdivisions of these four separate components of DNA. The DNA of above mentioned NC-17 variety compared to Florigiant variety showed no differences in thermal denaturation profiles, buoyant density, or in genome size.  相似文献   

13.
Angiosperms investigated by DNA/DNA reassociation studies were classified and tested for a taxonomic class- and subclass-specifity in a biometrical fashion. Monocotyledons and Dicotyledons differ significantly from each other with respect to a genomic parameter (U/R-ratio;U single copy DNA fraction;R = 1-U fraction of repetitive DNA). This difference is discussed from an evolutionary and molecular point of view.—Intercorrelations between the fraction of fast repeats, slow repeats, and single copy DNA can be detected. The amount of DNA organized in a short period pattern of interspersion is found to depend on the fraction of repetitive and single copy DNA. The number of DNA segments tandemly arranged in a short period pattern is linearly correlated withR/U-values. This correlation allows for a formula suitable for the estimation of the number of active genes in angiosperms. The analytical complexities of repetitive and single copy DNA are linearly correlated with the genome size of higher plants. The ratioU/R depends on the genome size of angiosperms in a hyperbolic fashion.  相似文献   

14.
Minisatellite-like DNA elements occur in the Arabidopsis thalianagenome in low copy and are weakly polymorphic between ecotypes.YAC clones from the EG-Arabidopsis library were identified withhomology to minisatellite 33.15 and bacteriophage M13 repeatelements. Other highly repeated A. thaliana DNA elements tendnot to be found in YAC clones carrying the minisatellite elementssuggesting that the elements are dispersed in the Arabidopsisgenome in regions of low complexity. The minisatellite elementsare represented at low copy in the EG-YAC library reflectingtheir frequency in the Arabidopsis genome. Key words: Minisatellite elements, Arabidopsis thaliana, YAC library screening  相似文献   

15.
《Experimental mycology》1990,14(4):299-309
The size and organization of the genome of Bremia lactucae, a highly specialized fungal pathogen of lettuce, has been characterized using dot blot genomic reconstructions, reverse genomic blots, and genomic DNA reassociation kinetics. The haploid genome contains 5 × 107 bp of DNA and 65% of the nuclear DNA is repeated. Low copy sequences are interspersed with repeated sequences in a short-period interspersion pattern. This pattern of genome organization is different to that described for other fungi. Although most fungi have been shown to contain some form of repetitive DNA other than the ribosomal repeat, the high percentage of repetitive DNA and the interspersion of low copy and repeated sequences are atypical of fungi characterized previously.  相似文献   

16.
The influence of glucosylation on the renaturation rate of T4 phage DNA   总被引:1,自引:0,他引:1  
The kinetic complexity of T4 phage DNA with different degrees of glucosylation was determined by studies of DNA renaturation. It was found that this parameter decreased with decreasing degree of glucosylation, and that the kinetic complexity of non-glucosylated DNA was in agreement with the known genome size of T4 phage. This observation indicates that no significant correction for differences in GC content is necessary in the determination of genome sizes from renaturation data.  相似文献   

17.
Number and distribution of polyadenylated RNA sequences in yeast.   总被引:59,自引:0,他引:59  
L M Hereford  M Rosbash 《Cell》1977,10(3):453-462
  相似文献   

18.
. Quantitative real-time PCR (qRT-PCR) was adapted to estimate transgene copy number in transgenic maize callus and plants. WHISKERS™-derived transgenic callus lines and plants were generated using two different gene constructs. These transgenic materials represented a range of copy number. A 'standard curve' was established by mixing plasmid DNA with non-transgenic genomic maize DNA using a calculated ratio of target gene to host genome size. 'Estimated' copy number in the callus lines and plants using qRT-PCR was correlated with the 'actual' copy number based on Southern blot analysis. The results indicated that there was a significant correlation between the two methods with both gene constructs. Thus, qRT-PCR represents an efficient means of estimating copy number in transgenic maize.  相似文献   

19.
The basidiomycete Paxillus involutus is forming ectomycorrhizal symbiosis with a broad range of forest trees. Reassociation kinetics on P. involutus nuclear DNA indicated a haploid genome size of 23 Mb including 11% of repetitive DNA. A similar genome size (20 Mb) was estimated by genomic reconstruction analysis using three single copy genes. To assess the gene density in the P. involutus genome, a cosmid containing a 33-kb fragment of genomic DNA was sequenced and used to identify putative open reading frames (ORFs). Twelve potential ORFs were predicted, eight displayed significant sequence similarities to known proteins found in other organisms and notably, several homologues to the Podospora anserina vegetative incompatibility protein (HetE1) were found. By extrapolation, we estimate the total number of genes in the P. involutus haploid genome to approximately 7700.  相似文献   

20.
DNA sequence copy number is the number of copies of DNA at a region of a genome. Cancer progression often involves alterations in DNA copy number. Newly developed microarray technologies enable simultaneous measurement of copy number at thousands of sites in a genome. We have developed a modification of binary segmentation, which we call circular binary segmentation, to translate noisy intensity measurements into regions of equal copy number. The method is evaluated by simulation and is demonstrated on cell line data with known copy number alterations and on a breast cancer cell line data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号