首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Ornithine transcarbamylase catalyzes the synthesis of citrulline from carbamyl phosphate and ornithine. This enzyme is involved in the biosynthesis of arginine in many organisms and participates in the urea cycle of mammals. The biosynthetic ornithine transcarbamylase has been purified from the filamentous fungus, Neurospora crassa. It was found to be a homotrimer with an apparent subunit molecular weight of 37,000 and a native molecular weight of about 110,000. Its catalytic activity has a pH optimum of 9.5 and Km's of about 5 and 2.5 mM for the substrates, ornithine and carbamyl phosphate, respectively, at pH 9.5. The Km's and pH optimum are much higher than those of previously characterized enzymes from bacteria, other fungi, and mammals. These unusual kinetic properties may be of significance with regard to the regulation of ornithine transcarbamylase in this organism, especially in the avoidance of a futile ornithine cycle. Polyclonal antibodies were raised against the purified enzyme. These antibodies and antibody raised against purified rat liver ornithine transcarbamylase were used to examine the structural similarities of the enzyme from a number of organisms. Cross-reactivity was observed only for mitochondrial ornithine transcarbamylases of related organisms.  相似文献   

2.
A simple and rapid affinity chromatographic method for the isolation of aspartate transcarbamylase from germinated seedlings of mung bean (Phaseolus aureus) was developed. A partially purified preparation of the enzyme was chromatographed on an affinity column containing aspartate linked to CNBr-activated Sepharose 4B. Aspartate transcarbamylase was specifically eluted from the column with 10 mm aspartate or 0.5 m KCl. The enzyme migrated as a single sharp band during disc electrophoresis at pH 8.6 on polyacrylamide gels. Electrophoresis of the sodium dodecyl sulfate-treated enzyme showed two distinct protein bands, suggesting that the mung bean aspartate transcarbamylase was made up of nonidentical subunits. Like the enzyme purified by conventional procedures, this enzyme preparation also exhibited positive homotropic interactions with carbamyl phosphate and negative heterotropic interactions with UMP. This method was extended to the purification of aspartate transcarbamylase from Lathyrus sativus, Eleucine coracona, and Trigonella foenum graecum.  相似文献   

3.
Effects of hypophysectomy and subsequent growth hormone administration on mitochondrial enzymes of the urea cycle were investigated in rat liver. Hypophysectomy increased the activities of the two mitochondrial enzymes, carbamyl phosphate synthetase and ornithine transcarbamylase but not of the cytosolic enzyme, argininosuccinate synthetase. The activity of mitochondrial phosphate dependent glutaminase was not affected. Administration of bovine growth hormone (100 μg/100 g body weight) for two weeks decreased the activities of carbamyl phosphate synthetase and ornithine transcarbamylase almost to the normal level. These results suggest a specific effect of growth hormone on mitochondrial enzymes of the urea cycle and serve to explain the increased urea formation in hypopituitarism.  相似文献   

4.
Ornithine transcarbamylase of rat liver has been purified to homogeneity. The purified enzyme of specific activity 870 to 920 focuses as a single protein at pH 7.2. At pH 7.7, the Km for carbamyl phosphate is 0.026 mM, and the Km for ornithine is 0.04 mM. The inhibition constants of a number of amino acids that act as competitive inhibitors of the enzyme are reported. The native enzyme of Mr = 112,000 is composed of three subunits of Mr = 39,600 +/- 1,000. Chemical evidence indicates that the subunits are identical in amino acid composition and amino acid sequence. The amino acid sequence of the NH2-terminal region of ornithine transcarbamylase is Ser-Gln-Val-Gln-Leu-Lys-Gly-Ser-Asp-Leu-Leu-Thr-Leu-Lys-Asn-(Phe)-X-Thr-X-Glu-Ile-Gln-Tyr-Met-.  相似文献   

5.
When rats were placed on a low-protein (5%) diet for 24 h or less, liver mitochondrial acetylglutamate decreased rapidly, carbamyl phosphate synthetase (ammonia) and ornithine transcarbamylase decreased little, and carbamyl phosphate synthesis (measured as citrulline) by isolated mitochondria occurred at very low rates. The matrix acetylglutamate content of these mitochondria, whether coupled or uncoupled, was increased similarly by preincubating them with added acetylglutamate, but citrulline synthesis increased from less than 1 to 2.3 nmol min-1 mg-1 in the coupled state, and from less than 1 to 35 nmol min-1 mg-1 in the uncoupled state. However, when coupled mitochondria were incubated with the substrates required for the synthesis of acetylglutamate in the matrix, citrulline synthesis increased to 48 nmol min-1 mg-1; this rate was similar to that of mitochondria from control rats (fed a normal diet). When mitochondria from controls were incubated with up to 5mM acetylglutamate, citrulline synthesis by coupled mitochondria was increased by 10 to 40%, while synthesis by uncoupled mitochondria was 1.5 to 4 times higher than that observed with the coupled mitochondria; matrix acetylglutamate in both conditions rose to levels similar to those in the medium. The reason for the different behavior of carbamyl phosphate synthetase (ammonia) in coupled and uncoupled mitochondria was not apparent; neither oxidative phosphorylation nor ornithine transport were limiting in the coupled system. These observations are an example of the restrictions imposed upon enzymatic systems by the conditions existing in the mitochondrial matrix, and of the different behavior of carbamyl phosphate synthetase in situ and in solution. In addition, they show that conclusions about the characteristics of the enzyme in coupled mitochondria based on observations made in uncoupled mitochondria are not necessarily justified.  相似文献   

6.
Pyrimidine-repressible carbamyl phosphate synthetase P was synthesized in parallel with aspartate transcarbamylase during growth of Bacillus subtilis on glucose-nutrient broth. Both enzymes were inactivated at the end of exponential growth, but at different rates and by different mechanisms. Unlike the inactivation of aspartate transcarbamylase, the inactivation of carbamyl phosphate synthetase P was not interrupted by deprivation for oxygen or in a tricarboxylic acid cycle mutant. The arginine-repressible isozyme carbamyl phosphate synthetase A was synthesized in parallel with ornithine transcarbamylase during the stationary phase under these growth conditions. Again, both enzymes were subsequently inactivated, but at different rates and by apparently different mechanisms. The inactivation of carbamyl phosphate synthetase A was not affected in a protease-deficient mutatn the inactivation of ornithine transcarbamylase was greatly slowed.  相似文献   

7.
We report experiments describing the isolation and characterization of ornithine transcarbamylase from normal human liver. Our preparative procedure employs initial centrifugation and heat steps, intermediate batch-wise adsorption and desorption from ion exchange resins and column chromatographic elution from hydroxylapatite, and final purification by gel filtration chromatography and glycerol density gradient centrifugation. The enzyme, purified 580-fold in this way, is homogeneous as judged by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Human ornithine transcarbamylase has a molecular weight of 114,000 and is a trimer of identical 38,000 molecular weight subunits. It focuses at pH 6.8 as a single band on polyacrylamide gel, has a COOH-terminal phenylalanine, an NH2-terminal glycine, an apparent Km for L-ornithine of 0.4 mM and for carbamyl phosphate of 0.16 mM, and a pH optimum of 7.7. The enzyme is quite stable over a temperature range from -50 degrees to +60 degrees C and over the pH range from 5.8 to 8.2. The quaternary structure and amino acid composition of the human enzyme are very similar to those of its bovine homologue.  相似文献   

8.
The mitochondrial proteins involved in adrenocortical steroidogenesis are synthesized as higher molecular weight precursors which require processing by the mitochondria to their mature sizes. The post-translational maturation of two of these proteins has been examined: the cholesterol side chain cleavage cytochrome P-450 (P-450scc) and the iron-sulfur protein, adrenodoxin. Total translation products synthesized in a cell-free system programmed by bovine adrenocortical poly(A+) RNA were incubated with isolated bovine adrenocortical or heart mitochondria followed by immunoisolation of radiolabeled P-450scc or adrenodoxin. In the presence of adrenocortical mitochondria, the precursor form of P-450scc was converted into a trypsin-resistant form that had the same molecular weight as mature P-450scc. Unlike adrenocortical mitochondria, heart mitochondria were unable to process the P-450scc precursor which remained unaltered and trypsin-sensitive. In addition, a matrix fraction of heart mitochondria did not cleave the P-450scc precursor. In contrast, the adrenodoxin precursor did not exhibit similar specificity as it was processed to the mature form by both adrenocortical and heart mitochondria. Also, the adrenocortical mitochondria were not restricted to processing endogenous proteins as they imported and cleaved the precursor to ornithine transcarbamylase. The results indicate that some mitochondrial precursor proteins have tertiary structures which allow them to be recognized by all mitochondria while other mitochondrial precursor proteins have structures recognizable by only specialized mitochondria.  相似文献   

9.
10.
The uptake of the cytoplasmically synthesized mammalian enzyme, ornithine transcarbamylase, into mitochondria is directed by an N-terminal peptide of 32 amino acids. We have investigated some of the structural requirements for the import of the enzyme from rat liver into isolated mitochondria and into mitochondria of COS cells transfected with cDNA encoding the precursor form of ornithine transcarbamylase. Deletion of 21 amino acids from the N terminus of the leader peptide blocked the import of the precursor; deletion of 5 amino acids at positions 15-19 from the N terminus of the leader peptide had no deleterious effect on the import of the enzyme, nor on the processing and assembly of subunits in mitochondria. The region deleted contained three of eight basic residues in the leader peptide suggesting that specific structural elements containing basic residues, rather than the general basic nature of the leader, may be involved in mitochondrial import.  相似文献   

11.
The receptor protein for the mitochondrial protein precursor synthesized in the cytosol was extensively purified from the mitochondrial membrane fraction by affinity column chromatography using a synthetic peptide containing the extrapeptide of ornithine aminotransferase as a ligand. The purified fraction contained two major proteins with molecular masses of 52 and 29 kDa. Of these proteins, only the 29 kDa protein bound to the extrapeptide of ornithine aminotransferase. Furthermore, anti-29 kDa protein Fab fragments inhibited the import of pre-ornithine aminotransferase into mitochondria, suggesting that the 29 kDa protein plays an essential role in the process of import of the mitochondrial protein precursor.  相似文献   

12.
Biogenesis of the mitochondrial matrix enzyme, ornithine transcarbamylase, has been shown to begin with synthesis on cytoplasmic ribosomes of a precursor, designated pre-ornithine transcarbamylase, which is approximately 4000 daltons larger than its corresponding mitochondrial subunit, followed by post-translational uptake and proteolytic processing of the precursor to its mature counterpart by mitochondria. We now report initial studies on the structure and properties of preornithine transcarbamylase. When this precursor is labeled at the NH2 terminus with N-formyl[35S]methionine and processed by mitochondria, no label is recovered with the mature subunit. This demonstrates that the amino acid extension which is characteristic of the precursor and which is removed during mitochondrial processing is NH2-terminal. This NH2-terminal extension is found intact in two peptides produced by limited proteolysis of the labeled precursor. Moreover, this amino acid extension modifies the behavior of the precursor during immunoprecipitation in the presence of ionic detergents and plays a critical role in facilitating uptake of the precursor by mitochondria.  相似文献   

13.
Earlier studies have revealed, upon hypophysectomy, a specific increase in mitochondrial urea cycle enzymes, namely carbamyl phosphate synthetase and ornithine transcarbamylase. Administration of growth hormone to hypophysectomized rats brought these enzyme activities back to normal. Since growth hormone plays a role in the formation of citrulline and ultimately urea, in the present study its effect on the levels of N-acetyl-L-glutamate, an allosteric activator of carbamyl phosphate synthetase has been investigated. A significant increase in N-acetyl-L-glutamate concentration in rat liver on hypophysectomy and its reversal back to normal levels on growth hormone administration was reported. These results suggest that the lack of growth hormone tends to amplify urea production by the liver.  相似文献   

14.
The mitochondrial enzyme, ornithine transcarbamylase (OTC) from rat liver was expressed in Spodoptera frugiperda (Sf) insect cells using a baculovirus vector. When insect cells were infected with recombinant Autographica californica nuclear polyhedrosis virus (AcNPV) containing a cDNA encoding the precursor form of OTC (pOTC) inserted into the polyhedrin gene, they expressed catalytically active enzyme at levels of approximately 2.5 micrograms/10(6) cells. About 25% of the active enzyme was a novel, partially processed product of pOTC containing four extra amino acids at the amino terminus of OTC. The most abundant protein found in mitochondria from infected insect cells was the normal processing intermediate iOTC, which contains 8 extra amino acids at the amino terminus of OTC. Whereas this species, present at 20 micrograms/10(6) cells, was not active and did not bind the transition-state analog inhibitor of OTC, delta-PALO, the novel processing product did bind and was affinity-purified, along with mature OTC, on a PALO-affinity column. The OTC expressed in insect cells was located in the same compartment of the mitochondrion as in rat liver. The incomplete processing occurred in vitro in both noninfected and infected insect cells. The high level of expression of iOTC using the baculoviral expression system provides a means of overproducing an obligatory intermediate in the mitochondrial import process.  相似文献   

15.
Ornithine transcarbamylase (EC 2.1.3.3) was purified to homogeneity from rat liver. The basis of the method is the chromatography of a high-speed supernatant fraction of a homogenized rat liver on an affinity column consisting of the transition-state analog of ornithine transcarbamylase, δ-N-(phosphonacetyl)-l-ornithine, immobilized on epoxy-activated Sepharose 6B through the α-amino group. The enzyme was eluted from the column using a gradient of the substrate, carbamyl phosphate, and further purified by gel filtration. The enzyme elutes with a constant specific activity of 250 to 260 μmol min?1 mg?1 at pH 8.5, 37°C, and is free of contaminating proteins on sodium dodecyl sulfate gel electrophoresis. Determination of the molecular weight of the purified enzyme by centrifugation (98,000) and by gel electrophoresis in the presence of sodium dodecyl sulfate (35,300) indicates that the enzyme from rat liver is a trimer. The enzyme exhibits conventional Michaelis-Menten kinetics at pH 7.4 and in this respect differs from the enzyme prepared by other methods.  相似文献   

16.
We have investigated mitochondrial import and processing of the precursor for human ornithine transcarbamylase (OTC; carbamoylphosphate:L-ornithine carbamoyltransferase, EC 2.1.3.3) in HeLa cells stably transformed with cDNA sequences encoding OTC precursors carrying mutations in their leader peptides. The mutant precursors studied included two with amino acid substitutions in the 32-amino-acid leader peptide (glycine for arginine at position 23, designated gly23; glycines for arginines at positions 15, 23, and 26, designated gly15,23,26) and two with deletions (deletion of residues 8 to 22, designated d8-22; deletion of residues 17 to 32, designated N16). Specific immunoprecipitation with anti-OTC antiserum of extracts of L-[35S]methionine-labeled cells expressing these mutations yielded only precursor species; neither mature nor intermediate-size OTC subunits were observed. Fractionation of radiolabeled cells, however, revealed important differences among the various mutants: the gly23 precursor was associated with mitochondria and was not detected in the cytosol; the d8-22 and N16 precursors were found with both the mitochondrial fraction and the cytosol; only the gly15,23,26 precursor was detected exclusively in the cytosol. A large fraction of each of the mitochondrially associated OTC species was in a trypsin-protected compartment. In particular, the gly23 precursor behaved in trypsin protection and mitochondrial fractionation studies in a manner consistent with its translocation into the mitochondrial matrix. On the other hand, the lack of binding of the gly23 protein to a delta-N-phosphonoacetyl-L-ornithine affinity column, which specifically recognizes active OTC enzyme, indicated that, despite its intramitochondrial location, the mutant protein did not assemble into the normal, active trimer. Further, the gly23 mutant precursor was unstable within the mitochondria and was degraded with a t1/2 of less further than 4 h. Thus, we have shown that, in intact HeLa cells, cleavage of the OTC leader peptide is not required for translocation into mitochondria, but is required for assembly into active enzyme.  相似文献   

17.
Chicken ornithine transcarbamylase: purification and some properties   总被引:1,自引:0,他引:1  
Ornithine transcarbamylase [EC 2.1.3.3] has been purified from chick kidney to homogeneity. The molecular weight is 110,000 as determined by gel filtration. Sodium dodecylsulfate polyacrylamide gel electrophoresis of the enzyme showed that the enzyme exists as a trimer of identical subunits of 36,000 daltons like other mammalian species ornithine transcarbamylases. In 0.1 M triethanolamine/HCl, the apparent optimum pH of the purified enzyme was 7.5 in the presence of 5 mM ornithine. The curve shifted toward a more alkaline region with a decrease in ornithine concentration. The specific activity of the purified enzyme as 77 units at pH 7.5. The Km for carbamyl phosphate was 0.11 mM and the Km for ornithine was 1.21 mM. With an increase in pH, a decrease in Km values for ornithine and an increase in the extent of inhibition by ornithine were observed. On using antibody against bovine liver ornithine transcarbamylase, the precipitin lines for the chick and bovine enzymes showed a spur pattern. Even when excess amounts of the antibody were added, the chick enzyme did not lose the activity while the bovine enzyme activity was inhibited completely.  相似文献   

18.
Summary Ornithine transcarbamylase (ornithine carbamoyltransferase, EC 2.1.3.3), the second enzyme of urea synthesis, is localized in the matrix of liver mitochondria of ureotelic animals. The enzyme is encoded by a nuclear gene, synthesized outside the mitochondria, and must then be transported into the organelle. The rat liver enzyme is initially synthesized on membrane-free polysomes in the form of a larger precursor with an amino-terminal extension of 3 400–4 000 daltons. In rat liver slices and isolated rat hepatocytes, the pulse-labeled precursor is first released into the cytosol and is then transported with a half life of 1 2 min into the mitochondria where it is proteolytically processed to the mature form of the enzyme. The precursor synthesized in vitro exists in a highly aggregated form and has a conformation different from that of the mature enzyme. The precursor has an isoelectric point (pI = 7.9) higher than that of the mature enzyme (pI = 7.2).The precursor synthesized in vitro can be taken up and processed to the mature enzyme by isolated rat liver mitochondria. The mitochondrial transport and processing system requires membrane potential and a high integrity of the mitochondria. The transport and processing activities are conserved between mammals and birds or amphibians and is presumably common to more than one precursor. Potassium ion, magnesium ion, and probably a cytosolic protein(s), in addition to the transcarbamylase precursor and the mitochondria, are required for the maximal transport and processing of the precursor.A mitochondrial matrix protease which converts the precursor to a product intermediate in size between the precursor and the mature subunit has been highly purified. The protease has an estimated molecular weight of 108 000 and an optimal pH of 7.5–8.0, and appears to be a metal protease. The protease does not cleave several of the protein and peptide substrates tested. The role of this protease in the precursor processing remains to be elucidated.Rats subjected to different levels of protein intake and to fasting show significant changes in the level of enzyme protein and activity of ornithine transcarbamylase. The dietary-dependent changes in the enzyme level are due mainly to an altered level of functional mRNA for the enzyme. In contrast, during fasting, the increase in the enzyme level is associated with a decreased level of translatable mRNA forthe enzyme.Pathological aspects of ornithine transcarbamylase including the enzyme deficiency and reduced activities of the enzyme in Reye's syndrome are also described. A possibility that impaired transport of the enzyme precursor into the mitochondria leads to a reduced enzyme activity, is proposed.Abbreviation pOTC precursor of ornithine transcarbamylase  相似文献   

19.
Ornithine transcarbamylase deficiency is a human genetic disease potentially susceptible to gene therapy. A murine model system exists for the disease in the sparse-fur (spf) mouse. Before gene therapy studies can be performed it is necessary to have practical methods which could detect successful gene transfer. Therefore we have developed an in situ staining procedure for the detection of ornithine transcarbamylase activity in polyacrylamide gels. Following electrophoretic separation under nondenaturing conditions inorganic phosphate cleaved from carbamyl phosphate in gels as a result of enzymatic activity was precipitated as phosphomolybdic acid and visualized by reduction with ascorbic acid. Results from the procedure correlated with ornithine transcarbamylase activity as measured by solution assay for citrulline, the other product of the reaction. This procedure readily distinguished mutant forms of ornithine transcarbamylase as exemplified by the murine spf mutation and resolved ornithine transcarbamylases of all animals tested into multiple forms. The procedure further distinguished ornithine transcarbamylases of animals of several different genera while yielding virtually identical patterns of the enzyme from species within the same genus. This procedure also suggested that the human enzyme was more labile than murine ornithine transcarbamylase; direct thermolability studies confirmed this finding.  相似文献   

20.
Differential digitonin extraction of rat liver mitochondria and of mitochondria of livers of affected and unaffected male sparse fur mice released a lysine transcarbamylase activity from the mitochondria at a digitonin to protein ratio in between that for myokinase and glutamate dehydrogenase, but at a slightly lower ratio than the ornithine transcarbamylase activity. Homocitrulline formation by isolated rat liver mitochondria is independent of the uptake of lysine by mitochondria as evidenced by the insensitivity of homocitrulline formation to changes in the matrix pH, in contrast to citrulline formation from ornithine. High-performance liquid chromatography separates the lysine transcarbamylase activity from the ornithine transcarbamylase activity. It is concluded that the lysine transcarbamylase activity is localized outside the inner mitochondrial membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号