首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent mapping of nucleosome positioning on several long gene regions subject to DNA methylation has identified instances of nucleosome repositioning by this base modification. The evidence for an effect of CpG methylation on nucleosome formation and positioning in chromatin is reviewed here in the context of the complex sequence-structure requirements of DNA wrapping around the histone octamer and the role of this epigenetic mark in gene repression.  相似文献   

2.
3.
Paramutation is the transfer of epigenetic information between alleles that leads to a heritable change in expression of one of these alleles. Paramutation at the tissue‐specifically expressed maize (Zea mays) b1 locus involves the low‐expressing B′ and high‐expressing B‐I allele. Combined in the same nucleus, B′ heritably changes B‐I into B′. A hepta‐repeat located 100‐kb upstream of the b1 coding region is required for paramutation and for high b1 expression. The role of epigenetic modifications in paramutation is currently not well understood. In this study, we show that the B′ hepta‐repeat is DNA‐hypermethylated in all tissues analyzed. Importantly, combining B′ and B‐I in one nucleus results in de novo methylation of the B‐I repeats early in plant development. These findings indicate a role for hepta‐repeat DNA methylation in the establishment and maintenance of the silenced B′ state. In contrast, nucleosome occupancy, H3 acetylation, and H3K9 and H3K27 methylation are mainly involved in tissue‐specific regulation of the hepta‐repeat. Nucleosome depletion and H3 acetylation are tissue‐specifically regulated at the B‐I hepta‐repeat and associated with enhancement of b1 expression. H3K9 and H3K27 methylation are tissue‐specifically localized at the B′ hepta‐repeat and reinforce the silenced B′ chromatin state. The B′ coding region is H3K27 dimethylated in all tissues analyzed, indicating a role in the maintenance of the silenced B′ state. Taken together, these findings provide insight into the mechanisms underlying paramutation and tissue‐specific regulation of b1 at the level of chromatin structure.  相似文献   

4.
5.
《Molecular cell》2021,81(16):3410-3421.e4
  1. Download : Download high-res image (226KB)
  2. Download : Download full-size image
  相似文献   

6.
7.
The affinity of a DNA sequence for the histone octamer in a core nucleosome depends on the intrinsic flexibility of the DNA. This parameter can be affected both by the sequence-dependent conformational preferences of individual base steps and by the nature and location of the exocyclic groups of the DNA bases. By adopting highly preferred conformations particular types of base step can influence the rotational positioning of the DNA on the surface of the histone octamer. The asymmetry of the next higher order of chromatin structure is determined in part by the asymmetric binding of the globular domain of histone H5 to the core nucleosome. © 1998 John Wiley & Sons, Inc. Biopoly 44: 423–433 1997  相似文献   

8.
The molecular basis underlying the sequence-specific positioning of nucleosomes on DNA was investigated. We previously showed that histone octamers occupy multiple specific positions on mouse satellite DNA in vivo and have now reconstituted the 234 bp mouse satellite repeat unit with pure core histones into mononucleosomes. Histones from mouse liver or chicken erythrocytes bind to the DNA in multiple precisely defined frames in perfect phase with a diverged 9 bp subrepeat of the satellite DNA. This is the first time that nucleosome positions on a DNA in vivo have been compared to those found on the same DNA by in vitro reconstitution. Most of the nucleosomes occupy identical positions in vivo and in vitro. There are, however, some characteristic differences. We conclude that sequence-dependent histone-DNA interactions play a decisive role in the positioning of nucleosomes in vivo, but that the nucleosome locations in native chromatin are subject to additional constraints.  相似文献   

9.
We determined the crystal structures of three nucleosome core particles in complex with site-specific DNA-binding ligands, the pyrrole-imidazole polyamides. While the structure of the histone octamer and its interaction with the DNA remain unaffected by ligand binding, nucleosomal DNA undergoes significant structural changes at the ligand-binding sites and in adjacent regions to accommodate the ligands. Our findings suggest that twist diffusion occurs over long distances through tightly bound nucleosomal DNA. This may be relevant to the mechanism of ATP-dependent and spontaneous nucleosome translocation, and to the effect of bound factors on nucleosome dynamics.  相似文献   

10.
DNA methylation occurs on CpG sites and is important to form pericentric heterochromatin domains. The satellite 2 sequence, containing seven CpG sites, is located in the pericentric region of human chromosome 1 and is highly methylated in normal cells. In contrast, the satellite 2 region is reportedly hypomethylated in cancer cells, suggesting that the methylation status may affect the chromatin structure around the pericentric regions in tumours. In this study, we mapped the nucleosome positioning on the satellite 2 sequence in vitro and found that DNA methylation modestly affects the distribution of the nucleosome positioning. The micrococcal nuclease assay revealed that the DNA end flexibility of the nucleosomes changes, depending on the DNA methylation status. However, the structures and thermal stabilities of the nucleosomes are unaffected by DNA methylation. These findings provide new information to understand how DNA methylation functions in regulating pericentric heterochromatin formation and maintenance in normal and malignant cells.  相似文献   

11.
Solvent binding in the nucleosome core particle containing a 147 base pair, defined-sequence DNA is characterized from the X-ray crystal structure at 1.9 Å resolution. A single-base-pair increase in DNA length over that used previously results in substantially improved clarity of the electron density and accuracy for the histone protein and DNA atomic coordinates. The reduced disorder has allowed for the first time extensive modeling of water molecules and ions.Over 3000 water molecules and 18 ions have been identified. Water molecules acting as hydrogen-bond bridges between protein and DNA are approximately equal in number to the direct hydrogen bonds between these components. Bridging water molecules have a dual role in promoting histone-DNA association not only by providing further stability to direct protein-DNA interactions, but also by enabling formation of many additional interactions between more distantly related elements. Water molecules residing in the minor groove play an important role in facilitating insertion of arginine side-chains. Water structure at the interface of the histones and DNA provides a means of accommodating intrinsic DNA conformational variation, thus limiting the sequence dependency of nucleosome positioning while enhancing mobility.Monovalent anions are bound near the N termini of histone α-helices that are not occluded by DNA phosphate groups. Their location in proximity to the DNA phosphodiester backbone suggests that they damp the electrostatic interaction between the histone proteins and the DNA. Divalent cations are bound at specific sites in the nucleosome core particle and contribute to histone-histone and histone-DNA interparticle interactions. These interactions may be relevant to nucleosome association in arrays.  相似文献   

12.
DNA deformation in the nucleosome involves partial unstacking between bases and base pairs. By adjusting orientations of different base-pair stacks relative to the histone octamer surface, the optimal set of stacks and their positions is derived, resulting in a sequence pattern, theoretically best suitable for nucleosome DNA. The sequence is very much consistent with available experimental data, thus, suggesting a common eukaryotic nucleosome DNA bendability sequence pattern based exclusively on the very basics of DNA.  相似文献   

13.
Using competitive reconstitution, we have refined the parameters for the binding of histone octamers to artificial nucleosome-positioning sequences of the form: (A/T3nn(G/C)3nn. We find that the optimal period between flexible segments is approximately 10.1 base-pairs, supporting the view that the DNA on the nucleosome surface is overwound. The strongest requirement for flexible DNA is near the protein dyad. However, we see no indication of changes in DNA helical repeat in this region. Using a series of repetitive sequences, we confirm that neither all A/T-rich nor all G/C-rich regions are identical in promoting nucleosome formation. Surprisingly, A/T-rich segments containing the TpA step, subject to purine-purine clash in the minor groove, favor nucleosome formation over sequences lacking this step. Short tracts of adenine residues are found to position on the histone surface like other A/T-rich regions, in the manner predicted by the direction of their sequence-directed bends as determined by electrophoretic methods. Tracts containing five adenine residues are extremely aniostropic in their flexibility and are strongly detrimental to nucleosome formation when positioned for major groove compression. Longer adenine tracts are found to position near the ends of the nucleosomal DNA. However, other positions may be occupied by an A12 tract, with only a minor penalty in the free energy of nucleosome formation. Overall, reconstituted nucleosome positions are translationally degenerate, suggesting a weak dependence on DNA flexibility for nucleosome positioning. Dinucleosomal reconstitutions on tandem dimers of the 5 S RNA gene of Lytechinus variegatus demonstrate a weak phasing dependence for the interaction between nucleosomes. This interaction is maximal for the 202 base-pair repeat and suggests a co-operative mechanism for the formation of ordered nucleosomal arrays based on a combination of DNA flexibility and nucleosome-nucleosome interactions.  相似文献   

14.
Our laboratories recently completed SELEX experiments to isolate DNA sequences that most-strongly favor or disfavor nucleosome formation and positioning, from the entire mouse genome or from even more diverse pools of chemically synthetic random sequence DNA. Here we directly compare these selected natural and non-natural sequences. We find that the strongest natural positioning sequences have affinities for histone binding and nucleosome formation that are sixfold or more lower than those possessed by many of the selected non-natural sequences. We conclude that even the highest-affinity sequence regions of eukaryotic genomes are not evolved for the highest affinity or nucleosome positioning power. Fourier transform calculations on the selected natural sequences reveal a special significance for nucleosome positioning of a motif consisting of approximately 10 bp periodic placement of TA dinucleotide steps. Contributions to histone binding and nucleosome formation from periodic TA steps are more significant than those from other periodic steps such as AA (=TT), CC (=GG) and more important than those from the other YR steps (CA (=TG) and CG), which are reported to have greater conformational flexibility in protein-DNA complexes even than TA. We report the development of improved procedures for measuring the free energies of even stronger positioning sequences that may be isolated in the future, and show that when the favorable free energy of histone-DNA interactions becomes sufficiently large, measurements based on the widely used exchange method become unreliable.  相似文献   

15.
16.
Nucleosomes sterically occlude their wrapped DNA from interacting with many large protein complexes. How proteins gain access to nucleosomal DNA target sites in vivo is not known. Outer stretches of nucleosomal DNA spontaneously unwrap and rewrap with high frequency, providing rapid and efficient access to regulatory DNA target sites located there; however, rates for access to the nucleosome interior have not been measured. Here we show that for a selected high-affinity nucleosome positioning sequence, the spontaneous DNA unwrapping rate decreases dramatically with distance inside the nucleosome. The rewrapping rate also decreases, but only slightly. Our results explain the previously known strong position dependence on the equilibrium accessibility of nucleosomal DNA, which is characteristic of both selected and natural sequences. Our results point to slow nucleosome conformational fluctuations as a potential source of cell-cell variability in gene activation dynamics, and they reveal the dominant kinetic path by which multiple DNA binding proteins cooperatively invade a nucleosome.  相似文献   

17.
How eukaryotic genomes encode the folding of DNA into nucleosomes and how this intrinsic organization of chromatin guides biological function are questions of wide interest. The physical basis of nucleosome positioning lies in the sequence-dependent propensity of DNA to adopt the tightly bent configuration imposed by the binding of the histone proteins. Traditionally, only DNA bending and twisting deformations are considered, while the effects of the lateral displacements of adjacent base pairs are neglected. We demonstrate, however, that these displacements have a much more important structural role than ever imagined. Specifically, the lateral Slide deformations observed at sites of local anisotropic bending of DNA define its superhelical trajectory in chromatin. Furthermore, the computed cost of deforming DNA on the nucleosome is sequence-specific: in optimally positioned sequences the most easily deformed base-pair steps (CA:TG and TA) occur at sites of large positive Slide and negative Roll (where the DNA bends into the minor groove). These conclusions rest upon a treatment of DNA that goes beyond the conventional ribbon model, incorporating all essential degrees of freedom of "real" duplexes in the estimation of DNA deformation energies. Indeed, only after lateral Slide displacements are considered are we able to account for the sequence-specific folding of DNA found in nucleosome structures. The close correspondence between the predicted and observed nucleosome locations demonstrates the potential advantage of our "structural" approach in the computer mapping of nucleosome positioning.  相似文献   

18.
Cells respond to DNA double-strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single-stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3-K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50-dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage.  相似文献   

19.
DNA修复的表观遗传学调控   总被引:1,自引:0,他引:1  
表观遗传学信息的改变是导致人类肿瘤形成的重要因素之一.基因组的稳定性经常会受到DNA损伤的威胁.然而,高度致密的染色质结构却极大地妨碍了DNA修复的进行.因此,真核生物细胞中必须有一个精确的机制来克服染色质这一天然的屏障.其中,组蛋白的共价修饰和ATP-依赖的染色质重塑通过改变染色质的结构,对DNA修复进程起着关键的调控作用.介绍了DNA修复过程中,发生在表观遗传学方面的主要调控过程,特别阐述了在DNA双链断裂损伤应答和修复过程中,组蛋白修饰和染色质重塑方面最新的研究进展,并对今后的发展方向进行了讨论.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号