首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The dynamics of phytoplankton size structure were investigatedin the freshwater, transitional and estuarine zones of the YorkRiver over an annual cycle. The contribution of large cells(microplankton, >20 µm) to total concentrations ofchlorophyll a increased downstream during winter, whereas thatof small cells (nanoplankton, 3–20 µm; picoplankton,<3 µm) increased downstream during summer. In the freshwaterregion, the contribution of micro phytoplankton to total concentrationsof chlorophyll a was significant during warm seasons (springand summer) but not during colder seasons (winter), whereasthe contribution of small-sized cells (especially picoplankton)increased during cold seasons. Temperature, light and high flushingrate appear to control phytoplankton community structure inthe freshwater region. In the transitional region, nano-sizedcells dominated the phytoplankton population throughout allseasons except during the spring bloom (April) when the chlorophylla concentration of micro phytoplankton increased. Size structurein the transitional region is most likely regulated by lightavailability. In the mesohaline region, nano- and pico-sizedcells dominated the phytoplankton population during the summerbloom, whereas micro-sized cells dominated during the winterbloom. Factors controlling phytoplankton community size structurein the mesohaline zone may be riverine nitrogen input, temperatureand/or advective transport from up-river. Based on these results,the spatial and seasonal variations in size structure of phytoplanktonobserved on the estuarine scale may be determined both by thedifferent preferences for nutrients and by different light requirementsof micro-, nano- and picoplankton. The results suggest thatanalyses of phytoplankton size structure are necessary to betterunderstand controls on phytoplankton dynamics and to bettermanage water quality in river-dominated, estuarine systems.  相似文献   

2.
The contribution of nanoplankton (< 10 µm fraction)to winter – spring (1977 – 78) and summer (1978,1979) phytoplankton nitrogen dynamics in lower NarragansettBay was estimated from ammonium, nitrate and urea uptake ratesmeasured by 15N tracer methods. During the winter – spring,an average of 80% of chlorophyll a and nitrogen uptake was associatedwith phytoplankton retained by a 10 µm screen. In contrast,means of 51 – 58% of the summer chlorophyll a standingcrops and 64 – 70% of nitrogen uptake were associatedwith cells passing a 10 µm screen. Specific uptake ratesof winter – spring nanoplankton populations were consistentlylower than those of the total population. Specific uptake ratesof fractionated and unfractionated summer populations were notsignificantly different. Ammonium uptake averaged between 50and 67% of the total nitrogen uptake for both the total populationand the < 10µm fraction. The total population and the10 µm fraction displayed similar preferences for individualnitrogen species. Though composed of smaller cells, flagellatedominated nanoplankton assemblages may not necessarily takeup nitrogen at faster rates than diatom dominated assemblagesof larger phytoplankters in natural populations. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia  相似文献   

3.
In October 1988 a bloom of Gyrodinium cf. aureolum was recordedalong a transect across the continental shelf reaching celldensities of 1300 ml–1 and chlorophyll a concentrationsup to 16 µg 1–1. The bloom was restricted to a nutrient-richthin surface layer of 10 m depth at the beginning of seasonalpycnocline. Hydrological conditions showed a particular salinitydistribution. The phytoplankton community was dominated by G.cf. aureolum but the coexisting flora presented a great diversity.UV-absorbing pigments were recorded in the community.  相似文献   

4.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

5.
Respiratory electron transport system (ETS) activity was measuredin plankton samples (<200 µm) collected in the NW AlboranSea. Sampling was carried out during seasonal cruises (summerand autumn 2003 and winter and spring 2004) in 12 stations locatedin transects off the coast of Malaga (southern Spain). Thiswork reports for the first time seasonal variations of the Arrheniusactivation energy (Ea) as well as being the first study to addressCO2 balance in the NW Alboran Sea. These variations were relatedto changes in the phytoplankton community assemblage, whichcould ultimately be caused by the seasonal variability of hydrologicalconditions. ETS activity was significantly higher in summer,coinciding with a higher chlorophyll a (Chl a) concentrationand relatively high levels of particulate organic matter. TheETS:Chl atotal ratios were low during the four seasons, suggestinga high contribution of autotrophic phytoplankton to the respiratoryactivity of planktonic community. Respiratory CO2 production(RCP) calculated from ETS activity ranged from 4.6 to 28.1 mgC m–3 day–1 during the four cruises. Chl a-specificRCP was lower than the maximum photosynthetic rates reportedin the literature for the studied area, suggesting that primaryproduction (PP) and respiration in the water column might beunbalanced.  相似文献   

6.
The investigation was carried out at one station in Korsfjorden,a typical deep silled fjord of western Norway. During 14 cruisesfrom 4 February to 30 June 1977 ATP, chlorophll a, phaeopigmenta, and in situ 14C-assimilation were measured in the net (>30µm), nano and ultraplankton (<5 µm). Sampleswere collected from five light depths within euphotic zone.The impact of hydrographical conditions and light regime onthe bloom dynamics was also studied. In the periods 4 February-7 March and 13 April-30 June, ultraplankton contributed >60%to the total primary production while net and nanoplankton dominatedfrom 7 March to 13 April. The diatoms Skeletonema costatum,Chaetoceros compressits and C. debilis, and Rhizosolenia hebetatavar. semispina made up the main part of the biomass on 21 March,28 March and 4 April respectively. A shade adapted diatom societywas located at the top of the nutricline in late June with S.costatum, Chaetoceros spp., and Thalassiosira spp. as the dominantspecies. The highest assimilation number of eight for the netplankton and four for the ultraplankton were found at the depthof 32% light intensity on 28 March and 24 May respectively.Linear relationships were found between chlorophyll a and ATPfor the different size fractions with regression slopes rangingfrom 4.3 to 5.8. The total primary production for the periodof investigation was calculated to 74 g C m–2. Light regimeand water column stability were decisive factors for the outburstof the first diatom bloom in late March. Grazing on net planktondiatoms increased during late March-early April. Changes inthe longshore wind-stress component were found to be essentialfor the understanding of the bloom dynamics.  相似文献   

7.
The annual cycle of the zooplankton community in a coastal embaymentof the Bay of Biscay was studied from data on zooplankton fractionslarger than 45 and 250 µm Smaller zooplankton and chlorophyllmaxima coincided in summer, while larger zooplankton reachedthe maximum in spring. Copepods dominated in both fractionsmost of the year, being copepod nauplii and postnaupliar stagesof Oithona nana and Paracalanus parvus the main constituentsof the microzooplankton maxima, and older copepodites and adultsof Acartw clausi of the meso-macrozooplankton maxima. Secondarypeaks of abundance due to protozoan blooms of Steno-semellanivalu, in early spring, and Noctiluca santillans, in summer,were also observed in smaller and larger fractions respectively.The collapse of phytoplankton biomass in early autumn was followedby a strong decrease of zooplankton in mid autumn. From thisperiod to winter, chlorophyll and zooplankton abundance showedsmall variations, but noticeable changes in the compositionand size spectra of zooplankton were observed. In winter, valuesof chlorophyll and zooplankton abundance reached minima, A.clausidominated the copepod assemblage and carnivorous zooplankterswere absent or negligible The annual development of the mainpredator populations (Sagitta frideria, Luiopc tetraphylla andanchovies) were found to be synchronized with the variationsin abundance and size spectra of zooplankton in the study area.  相似文献   

8.
The neighboring Great South Bay (GSB) and Peconic Bay (PB) ofLong Island, NY, USA, were observed to support distinctive microplanktoniccommunities and trophic structure over most of an annual cycle(1998–99). Trophic structure analyses were based on 15months of sampling for inorganic and organic nutrients, size-fractionatedchlorophyll a (Chl a) and nanoplankton and microplankton abundances.While dissolved inorganic nitrogen (DIN) inventories were notdemonstrably different between bays, dissolved organic carbon(DOC) and nitrogen were significantly higher in GSB than inPB and covaried with Chl a concentrations. Likewise, total biomasses(µg C L–1) and mean seasonal biomass ratios of heterotrophicnanoplankton (HNAN) to autotrophic nanoplankton (ANAN) weresubstantially higher in GSB (>0.30) than in PB (<0.15)from spring to autumn 1998. The higher nanoflagellate biomassin GSB appears to have been indirectly supported by elevatedconcentrations of dissolved organic matter (DOM). During winterand spring 1999, biomass ratios in GSB dropped to levels similarto those in PB and coincided with a clear water event in GSBthat may have been caused by increased bivalve suspension feeding.Even though these bays share similar broad-scale oceanographic/hydrogeologicsettings and a common assortment of planktonic taxa, the structureand function of their planktonic communities were fundamentallydistinct.  相似文献   

9.
Chlorophyll (Chl) a was measured every 10 m from 0 to 150 min the Transition Domain (TD), located between 37 and 45°N,and from 160°E to 160°W, in May and June (Leg 1) andin June and July (Leg 2), 1993–96. Total Chl a standingstocks integrated from 0 to 150 m were mostly within the rangeof 20 and 50 mg m–2. High standing stocks (>50 mg m–2)were generally observed westof 180°, with the exceptionof the sporadic high values at the easternmost station. Thetotal Chl a standing stock tended to be higher in the westernTD (160°E–172°30'E) than in the central (175°E–175°W)and eastern (170°W–160°W) TD on Leg 1, but thesame result was not observed on Leg 2. It was likely that largephytoplankton (2–10 and >10 µm fractions) contributedto the high total Chl a standing stock. We suggest that thehigh total Chl a standing stock on Leg 1, in late spring andearly summer, reflects the contribution of the spring bloomin the subarctic region of the northwestern Pacific Ocean. Thedistribution of total Chl a standing stock on Leg 2 was scarcelyaffected by the spring phytoplankton bloom, suggesting thattotal Chl a standing stock is basically nearly uniform in theTD in spring and summer. Moreover, year-to-year variation inthe total Chl a standing stock was observed in the western TDon Leg 1, suggesting that phytoplankton productivity and/orthe timing of the main period of the bloom exhibits interannualvariations.  相似文献   

10.
The chlorophyll a content of nicroparticles which passed throughglass fiber filters Whatman type GF/F but were retained on 0.2µm Nuclepore membranes was analyzed on a weekly basisover the course of 1 year in Kaneohe Bay, Hawaii. Depth profileswere also obtained at four oceanic stations off the islandsof Maui and Molokai, Hawaii. Experimental evidence indicatedthat these microparticles were photosynthetically active. Theproportion of microparticulate chlorophyll a could be up to35% of picoplankton chlorophyll a (2.0–0.2 µm sizerange) retained on a single pass through a 0.2 p.m Nucleporefilter. The filtrate from both GFIF and 0.2µm Nucleporefilters was found to contain chlorophyll a which could be retainedon a subsequent pass through either 0.2 µm Nuclepore orGF/F filters. Only serial filtration can ensure that essentiallyall picoplankton have been filtered from the water when eitherof these types of filters is used.  相似文献   

11.
The occurrence of the salp Thetys vagina was observed in theJapan Sea during spring 2004. Catches up to 187 kg wet weight(WW) per 2.18 x 105 m3 (equal to 0.9 g WW m–3) were collectedwith 10-m diameter surface-water otter trawl nets. The horizontaldistribution indicated that the high biomass was related tothe area with high chlorophyll a (Chl a) concentration, whichwas located around the subarctic front with the warm TsushimaCurrent. Five prey taxa were identified from the gut contentsof individuals from the high Chl a area. The diatom Coscinodiscusspp. (13–55 µm in diameter) dominated numerically.Another significant prey was the large diatom Coscinodiscuswailesii (219–313 µm) that is an indicator of thespring bloom in this area. The mass occurrence of T. vaginathus appears related to phytoplankton availability, though themechanisms remain uncertain.  相似文献   

12.
Grazing by microzooplankton on autotrophic and heterotrophicpicoplankton as well as >0.7 µm phytoplankton (as measuredby chlorophyll a) was quantified during July, August, October,January and April in the surface layer of Logy Bay, Newfoundland(47°38'14'N, 52°39'36'W). Rates of growth and grazingmortality of bacteria, Synechococcus and >0.7 µm phytoplanktonwere measured using the sea water dilution technique. Microzooplanktoningested 83–184, 96–366 and 64–118% of bacterial,Synechococcus and >0.7 µm phytoplankton daily potentialproduction, respectively and 34–111, 25–30 and 16–131%of bacterial, Synechococcus and >0.7 µm phytoplanktonstanding stocks, respectively. The trends in prey net growthrates followed the seasonal cycles of prey biomass, suggestingthat microzooplankton are important grazers in Newfoundlandcoastal waters. Ingestion was lowest during January and October(~2 µg C l–1 day–1) and highest in August(~20 µg C l–1 day–1). Aside from April when>0.7 µm phytoplankton represented the majority (~80%)of carbon ingested, bacterioplankton and <1 µm phytoplanktonrepresented most of the carbon ingested (~40–100%). Althoughmicrozooplankton have here-to-fore been unrecognized as an importantgrazer population in Newfoundland coastal waters, these resultssuggest that they play an important role in carbon flow withinthe pelagic food web, even at low temperatures in Logy Bay.  相似文献   

13.
Size-fractionated chlorophyll a biomass and picophytoplanktoncell number distributions were investigated along a longitudinalaxis of Southampton Water estuary during autumn. Chlorophylla concentration in the >5µm and the 1–5 µmsize fractions was highest midway down the estuary, and decreasedboth in the landward and seaward directions. In contrast, chlorophylla biomass in the 0.2–1 µm size fraction showed nodecline towards the seaward end of the estuary. In agreementwith this observation, phycoerythrin-containing picocyanobacteriacell concentration showed a positive exponential-like relationshipwith salinity and eukaryotic picophytoplankton were also highestat high salinities. Expressed as a percentage of total, chlorophylla standing stock in both the 1–5 µ.m (4.4–28.7%)and the 0.2–1 µm size fractions (1.7–8.6%)was inversely correlated with total chlorophyll a concentration.Both these two fractions made a greater input to the total phaeopigmentconcentration than to the total pool of active chlorophyll a.  相似文献   

14.
The temporal variation in egg production of the planktonic copepodsCalanus helgolandicus, Temora longicornis and Pseudocalanuselongatus was studied during two different spring bloom periodsin 1989 and 1990 by weekly sampling at two permanent stationsin coastal waters off Plymouth (SW England). Copepod egg productionwas estimated in situ by incubating individual adult femalesin filtered seawater for 24 h (72 h until hatching for P.elongatus)at the field surface temperature. The relationship between copepodegg production rates and: (i) chlorophyll a concentration (totaland >10 µm size fraction), (ii) temperature and (iii)initial copepod gut pigment content was investigated. The springbloom periods were very different in both years, with the occurrenceof a Phaeocystis sp. bloom in 1990, which negatively affectedthe feeding and fecundity of copepods. Egg production ratesin spring 1989 were significantly correlated with chlorophylla concentration (particularly with the >10 µm fraction),field temperature and copepod gut pigment contents. In spring1990, egg production rates were also correlated with copepodgut pigment contents, but no significant correlations were obtainedwith temperature or with chlorophyll a concentration, as a consequenceof the lower egg production rates obtained during the Phaeocystissp. dominance period. These results show that food availabilityis the factor which mainly affects the fecundity of neriticcopepods in short time periods.  相似文献   

15.
The phytoplankton and ice algal assemblages in the SiberianLaptev Sea during the autumnal freeze-up period of 1995 aredescribed. The spatial distribution of algal taxa (diatoms,dinoflagellates, chrysophytes, chlorophytes) in the newly formedice and waters at the surface and at 5 m depth differed considerablybetween regions. This was also true for algal biomass measuredby in situ fluorescence, chlorophyll (Chl) a and taxon-specificcarbon content. Highest in situ fluorescence and Chl a concentrations(ranging from 0.1 to 3.2 µg l–1) occurred in surfacewaters with maxima in Buor Khaya Bay east of Lena Delta. Thealgal standing stock on the shelf consisted mainly of diatoms,dinoflagellates, chrysophytes and chlorophytes with a totalabundance (excluding unidentified flagellates <10 µm)in surface waters of 351–33 660 cells l–1. Highestalgal abundance occurred close to the Lena Delta. Phytoplanktonbiomass (phytoplankton carbon; PPC) ranged from 0.1 to 5.3 µgC l–1 in surface waters and from 0.3 to 2.1 µg Cl–1 at 5 m depth, and followed the distribution patternof abundances. However, the distribution of Chl a differed considerablyfrom the distribution pattern shown by PPC. The algal assemblagein the sea ice, which could not be quantified due to high sedimentload, was dominated by diatom species, accompanied by dinoflagellates.Thus, already during the early stage of autumnal freeze-up,incorporation processes, selective enrichment and subsequentgrowth lead to differences between surface water and sea icealgal assemblages.  相似文献   

16.
Although both nutrient inputs and zooplankton grazing are importantto phytoplankton and bacteria in lakes, controversy surroundsthe relative importance of grazing pressure for these two groupsof organisms. For phytoplankton, the controversy revolves aroundwhether zooplankton grazers, especially large cladocerans likeDaphnia, can effectively reduce phytoplankton populations regardlessof nutrient conditions. For bacteria, little is known aboutthe balance between possible direct and indirect effects ofboth nutrients and zooplankton grazing. However, there is evidencethat bacteria may affect phytoplankton responses to nutrientsor zooplankton grazing through direct or apparent competition.We performed a mesocosm experiment to evaluate the relativeimportance of the effects of nutrients and zooplankton grazingfor phytoplankton and bacteria, and to determine whether bacteriamediate phytoplankton responses to these factors. The factorialdesign crossed two zooplankton treatments (unsieved and sieved)with four nutrient treatments (0, 0.5, 1.0 and 2.0 µgphosphorus (P) l–1 day–1 together with nitrogen(N) at a N:P ratio of 20:1 by weight). Weekly sieving with 300µm mesh reduced the average size of crustacean zooplanktonin the mesocosms, decreased the numbers and biomass of Daphnia,and increased the biomass of adult copepods. Nutrient enrichmentcaused significant increases in phytoplankton chlorophyll a(4–5x), bacterial abundance and production (1.3x and 1.6x,respectively), Daphnia (3x) and total zooplankton biomass (2x).Although both total phytoplankton chlorophyll a and chlorophylla in the <35 µm size fraction were significantly lowerin unsieved mesocosms than in sieved mesocosms, sieving hadno significant effect on bacterial abundance or production.There was no statistical interaction between nutrient and zooplanktontreatments for total phytoplankton biomass or bacterial abundance,although there were marginally significant interactions forphytoplankton biomass <35 µm and bacterial production.Our results do not support the hypothesis that large cladoceransbecome less effective grazers with enrichment; rather, the differencebetween phytoplankton biomass in sieved versus unsieved zooplanktontreatments increased across the gradient of nutrient additions.Furthermore, there was no evidence that bacteria buffered phytoplanktonresponses to enrichment by either sequestering P or affectingthe growth of zooplankton.  相似文献   

17.
Carbon (C) fixation and nitrogen (N) assimilation rates havebeen estimated from 14C and 15N techniques for a 12 month periodin a Scottish sea loch. The maximum rate of nitrogen assimilated(29.92 mmol N m–2 day–1) was in April at the mostseaward station; similar high rates were experienced duringMay at the other stations. Carbon fixation rates were maximal(488–4047 mg C m–2day–1) at the time of highphytoplankton biomass (maximum 8.3 mg m–3 chlorophylla) during May, whilst nitrate concentrations remained >0.7µ.mol l–1. C:N assimilation ratios suggest nitrogenlimitation only during the peak of the spring bloom, althoughat times nitrogen (nitrate and ammonium) concentration fellto 0.2 µmol l–1 in the following months. The verticalstability of the water column, influenced by tidal and riverineflushing, varied along the axis of the loch, resulting in markeddifferences between sampling stations. Although ammonium waspreferentially assimilated by phytoplankton, >50% of productionwas supported by nitrate uptake and only during the summer monthswas the assimilation of ammonium quantitatively important.  相似文献   

18.
Subsurface phytoplankton blooms fuel pelagic production in the North Sea   总被引:2,自引:0,他引:2  
The seasonal phytoplankton biomass distribution pattern in stratifiedtemperate marine waters is traditionally depicted as consistingof spring and autumn blooms. The energy source supporting pelagicsummer production is believed to be the spring bloom. However,the spring bloom disappears relatively quickly from the watercolumn and a large proportion of the material sedimenting tothe bottom following the spring bloom is often comprised ofintact phytoplankton cells. Thus, it is easy to argue that thespring bloom is fueling the energy demands of the benthos, butmore difficult to argue convincingly that energy fixed duringthe spring bloom is fueling the pelagic production occurringduring summer months. We argue here that periodic phytoplanktonblooms are occurring during the summer in the North Sea at depthsof >25 m and that the accumulated new production [sensu (Dugdaleand Goering, Limnol. Oceanogr., 12, 196–206, 1967)] occurringin these blooms may be greater than that occurring in the springbloom in the same regions. Thus, such blooms may explain apparentdiscrepancies in production yields between different temperatemarine systems.  相似文献   

19.
The distinct patterns of stratification in the North Channeland stratified region of the western Irish Sea influence theseasonal abundance of phytoplankton. The 3–4 month productionseason in the stratified region was characterized by productionand biomass peaks in the spring (up to 2378 mg C m2 day–1and 178.4 mg chlorophyll m–2) and autumn (up to 1280 mgC m–2 day–1 and 101.9 mg chlorophyll m–2).Phytoplankton in the North Channel exhibited a short, late productionseason with a single summer (June/July) peak in production (4483mg Cm–2 day–1) and biomass (–160.6 mg chlorophyllm–2). These differences have little influence on copepoddynamics. Both regions supported recurrent annual cycles ofcopepod abundance with similar seasonal maxima (182.8–241.8103ind. m–2) and dominant species (Pseudocalanus elongatusand Acartia clausi). Specific rates of population increase inthe spring were 0.071 and 0.048 day1 for the North Channel andstratified region, respectively. Increased copepod abundancein the stratified region coincided with the spring bloom, andwas significantly correlated with chlorophyll standing stock.Increased copepod abundance preceded the summer production peakin the North Channel. This increase was not correlated withchlorophyll standing crop, suggesting that a food resource otherthan phytoplankton may be responsible for the onset of copepodproduction prior to the spring bloom. Hetero-trophic microplanktonas an alternative food source, and advection of copepods fromthe stratified region, are proposed as possible explanationsfor copepod abundance increasing in advance of the summer peakin primary production.  相似文献   

20.
The dynamics of phytoplankton biomass were studied in an Eastern Mediterranean semi-enclosed coastal system (Maliakos Gulf, Aegean Sea), over 1 year. In particular, chlorophyll a (chl a) was fractionated into four size classes: picoplankton (0.2–2 μm), nanoplankton (2–20 μm), microplankton (20–180 μm) and net phytoplankton (>180 μm). The spatial and temporal variation in dissolved inorganic nutrients and particulate organic carbon (POC) were also investigated. The water column was well mixed throughout the year, resulting in no differences between depths for all the measured parameters. Total chl a was highest in the inner part of the gulf and peaked in winter (2.65 μg l–1). During the phytoplankton bloom, microplankton and net phytoplankton together dominated the autotrophic biomass (67.2–95.0% of total chl a), while in the warmer months the contribution of pico- and nanoplankton was the most significant (77.5–93.4% of total chl a). The small fractions, although showing low chl a concentrations, were important contributors to the POC pool, especially in the outer gulf. No statistically significant correlations were found between any chl a size fraction and inorganic nutrients. For most of the year, phytoplankton was not limited by inorganic nitrogen concentrations. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号