首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of ambient temperatures of 10°C and 30°C and of E. coli endotoxin on brain temperature and plasma iron level were investigated in unrestrained wild house mice, Mus musculus. In control animals (i.p. saline-injected) exposed to cold environmenta the brain temperature decreased and plasma iron levels were lower than those observed under thermoneutral conditions (30°C). Animals injected i.p. with endotoxin (0.5 g·kg-1) and placed at 30°C showed a drop in plasma iron level during the fever episode. The results provide strong evidence for a relationship between brain temperature and plasma iron level in control mice under thermoneutral conditions, and show that during cold exposure or after injection of endotoxin, there is no linear correlation between brain temperature and plasma iron. Moreover, it was found that cold stress influences plasma iron level and that this influence is not mediated by changes in brain temperature.Abbreviations EP endotoxin pyrogen - T A ambient temperature - T Br brain temperature - T Br change in T Br in relation to its initial value in feverish or control mice - T Br difference between T Br in feverish and control mice  相似文献   

2.
Summary Using manometric and gas analytical methods oxygen consumption , carbon dioxide production , respiratory quotientRQ, (Fig. 1A-C) and thorax surface temperature difference T ts (Fig. 3) were determined in single bees. The animals were either sitting in respiratory chambers or were suspended by the scutum, in which case they were resting, walking (turning a small polystyrene ball) or flying in a closed miniature wind tunnel.During resting (sitting in Warburg vessels) at an ambient temperatureT a=10°C,RQ was 1.01±0.2 (n=905) with variations due to method (Fig. 1D, E).RQ values during walking were determined in single cases. In no case were they significantly different from 1.00. After the first 10 min of flight meanRQ was 1.00±0.04. It was significantly smaller than 1.00 (RQ=0.97) only during the last 5% of long-time flights (mean flight duration 58.8±28.8 min). With the exception of near-exhaustion conditions no signs of fuels other than carbohydrates were found.Metabolic rateP m was 19.71±21.38 mW g–1 during resting at 20°CT a30°C indicating that many resting bees actively thermoregulate at higherT a. After excluding bees which were actively thermoregulating, by an approximationP m was 5.65±2.44 mW g–1 at 20°CT a30°C. True resting metabolic rate for sitting bees atT a=10°C was 1.31±0.53 mW g–1 (Fig. 2A, B).A significant negative correlation was found between relative (specific) oxygen consumption rel and body massM b at 85 mgM b150 mg.At 0°CT ts16.5°C a significant (-0.01) positive correlation was found between and T ts in single resting bees: T Ts+0.099, or betweenP m and T ts:P m=1.343 T ts+0.581 (Fig. 3D) in ml h–1,P m in mW,T in °C).During walking (duration 13.15±5.71 min,n=13) at 12.5°CT a21°C a stable T ts of 11.41±3.37°C, corresponding to 167 mW g–1, was reached for 80 to 90% of the walking time (Fig. 4B).During wind tunnel flights of tethered animals the minimal metabolic power measured in exhaustion experiments was 240 mW g–1. Calculation of factors of increase inP m is of limited value in poikilotherms, in which true resting conditions are not exactly defined.  相似文献   

3.
A horizontal rotating tubular bioreactor (HRTB) was designed as a combination of a thin-layer bioreactor and a biodisc reactor whose interior was divided by O-ring shaped partition walls. For the investigation of mixing in HRTB the temperature step method was applied. Temperature changes in the bioreactor were monitored by six Pt-100 sensors (t 90 response time 0.08 s and resolution 0.002 °C) which were connected with an interface unit and a personal computer. In this work a modified tank in series concept was used to establish a mathematical model. The heat balance of the model compartments was established according to the physical model and the spiral flow pattern. Numerical integration was done by the Runge-Kutta-Fehlberg method. The mathematical mixing model called spiral flow model contained four adjustable parameters (N1, Ni, F cr and F p) and five parameters which characterized the plant and experimental conditions. The spiral flow model was capable to describe the mixing in HRTB properly, and its applicability was much better than with the simple flow model, presented earlier.List of Symbols A ui m2 ithpart of inner surface of bioreactor's wall - A vi m2 ith part of outlet surface of bioreactor's wall - C p kJ kg–1 K–1 heat capacity of liquid - c pr kJ kg–1 K–1 heat capacity of bioreactor's wall - D h–1 dilution rate - E °C°C–1h–1 error of mathematical model - F cr dm3 s–1 circulation flow in the model - F p dm3s–1 back flow in the model - F t dm3 s–1 inlet flow in bioreactor - I °C intensity of temperature step, the difference in temperature between the temperature of the inlet liquid flow and the temperature of liquid in bioreactor before temperature step - K1 Wm–2 K –1 heat transfer coefficient between the liquid and bioreactor's wall - K2 Wm–2 K –1 heat transfer coefficient between the bioreactor's wall and air - L m length of bioreactor - m s kg mass of bioreactor's wall - n min–1 rotational speed of bioreactor - n s number of temperature sensors - N1 number of cascades - Ni number of compartments inside cascade - r u m inner diameter of bioreactor - r v m outside diameter of bioreactor - s(t) step function - t s time - T °C temperature - T c °C calculated temperature - T m °C measured temperature - T N 1,Ni°C temperature of liquid in defined compartments inside the cascade - T N 1,S°C temperature of defined part of bioreactor's wall - T N i,z°C temperature of surrounding air - V t dm3 volume of liquid in the bioreactor  相似文献   

4.
The partial phase diagram and the hydration properties of the 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE)-water system, in the absence and presence of 30 mol% cholesterol, have been investigated by solid state phosphorus NMR of the lipid and deuterium NMR of heavy water. The POPE-D2O phase diagram resembles other phosphatidylethanolamine (PE)-water systems: below water-to-lipid molar ratios (Ri) of 3 the lamellar gel (L or Lc)-to-hexagonal type II (HII) phase sequence is observed on increasing the temperature. For Ri3 the thermotropic sequence (L or Lc)-L-HII is detected. On increasing hydration from Ri=3, the HII phase is detected from 40°C to 85°C whereas the gel phase is observed from 40°C to 30°C. The limiting hydrations of the gel, L and HII phases are Ri 3, 17 and 20, respectively. The number of bound water molecules per lipid is ca. 8 in both the La and HII phases. The presence of cholesterol stabilizes the hexagonal phase 20°C below temperatures at which it is observed in its absence and reduces the limiting hydration of the fluid and hexagonal phases to Ri 9 and 14, respectively. The structure and/or dynamics of the water bound to the interface are markedly modified on going from the L to the HII phase.Abbreviations NMR Nuclear magnetic resonance - DDPE 1,2-Didodecyl-rac-glycerol-3-phosphoethanol-amine - DHPE 1,2-Dihexadecyl-sn-glycerol-3-phosphoethanol-amine - DOPE 1,2-Dioleoyl-sn-glycerol-3-phosphoethanol-amine - POPE 1-Palmitoyl-2-oleoyl-sn-glycerol-3-phosphoetha-nolamine - DAPE 1,2-Diarachinoyl-sn-glycerol-3-phosphoethanol-amine - DMPC 1,2-Dimyristol-sn-glycerol-3-phosphocholine - DPPC 1,2-Dipalmitoyl-sn-glycerol-3-phosphocholine - Tc lamellar gel-to-lamellar fluid transition temperature - Th lamellar fluid-to-hexagonal transition temperature  相似文献   

5.
Brain temperature in pigeons: Effects of anterior respiratory bypass   总被引:1,自引:1,他引:0  
Summary During heat stress in domestic pigeons (Columba livia, mean mass 0.43 kg) brain temperature (T B) varied in parallel with colonic temperature (T c). The difference between these (T CT B=T) averaged 0.7°C and was not significantly altered when the animal breathed through a trachael cannula bypassing the buccopharyngeal cavity. When we sealed the nares and beak in bypass animals, T was significantly reduced but was nevertheless maintained at 0.4°C. When the eyes were sealed as well, however, T was reversed, amounting to –0.4°C. Conversely, with eyes sealed but beak and nares open, T was indistinguishable from that in controls. These results suggest a role for the cornea in evaporative cooling, at least when respiratory evaporation is impaired, and are consistent with the hypothesis that buccopharyngeal and corneal evaporation are coupled to brain cooling. The probable mechanism for this coupling is the flow of venous blood from evaporative surfaces through theretia mirabilia in the temporal areas. Here heat is transferred from the warmer arterial blood flowing through theretia toward the brain to the centrally flowing, cooler venous blood.  相似文献   

6.
The reaction of methanol dehydrogenase with cytochrome c L from Methylophaga marina and the reactions of the non-physiological substrates, Wurster's blue and ascorbic acid, with both proteins were studied as a function of temperature (4–32 °C), pressure (1–2000 bar) and ionic strength using the optical high pressure stopped-flow method. The thermodynamic parameters H, S and V were determined for all reactions where electron transfers are involved. These data allowed the determination of the Maxwell relationships which proved the internal thermodynamic consistency of the system under study. A conformational change on the cytochrome c L level was deduced from both breaks in the Arrhenius plots and the variation of the V with temperature.Abbreviations MOPS 4-morpholinepropanesulfonic acid - CHES 2-(cyclohexylamino)ethanesulfonic acid - MDH methanol dehydrogenase - EDTA ethylenedinitrilotetraacetic acid disodium salt - BTB bromothymol blue (3,3-dibromothymolsulfoneph-thalein) - PQQ 2,7,9-tricarboxy-lH-pyrrolo-[2,3f]quinoline-4,5-dione - cytochrome c HH mammalian horse heart cytochrome c  相似文献   

7.
Summary The contractile force and frequency of the spontaneously beating auricles ofRana tempeoraria were recorded as a function of temperature. Tracings of the tension development, its integrated and derived functions showed that the isolated auricles of warmadapted winter frogs responded to temperature with changes in inotropy but not in the tension generated in one minute.Adrenaline, previously shown to act via the in the auricles of this frog, increased both the force and the frequency of the contractions between 5 and 25°C. The affinity for adrenaline was highest at 5°C for all the parameters examined. The maximal effect (efficacy) of adrenaline for Tmax, Tmax and the tension-time integral was highest at 5°C while the efficacy of adrenaline on the heart rate reached its maximum at 25°C. At 5°C the tension generated in one minute was doubled by the maximally effective dose of adrenaline (1.4 × 10–6 M). These results strongly suggest that adrenaline, being the main sympathetic neurotransmitter in the frog, has an important role in adjusting the heart to maximal performance at the low temperatures.  相似文献   

8.
Summary The time-course of changes in skeletal muscle pH during arousal from hibernation in the Columbian ground squirrel was studied using31P NMR spectroscopy. In hibernation (T re 7–9°C), shoulder/neck muscle pH was 7.45±0.03 and Im was 0.60. In euthermia (T re 37°C), muscle pH was 7.24±0.05 and Im was 0.75. Thus the overall pH-temperature coefficient was-0.009 pH units/°C, indicating acidification of the muscle in hibernation. During the transition from hibernation to euthermia, however, the muscle shows a nonlinear pattern of pH change. In early arousal (T sh<20–25°C,T re<15°C) muscle pH does not change and muscle Im increases to 0.72. In later arousal (T sh>20–25°C,T re>15°C) muscle pH decreases gradually toward the euthermic value and muscle Im increases only slightly from 0.72 to 0.75. These results support the hypothesis that intracellular acidification of the muscle, present during hibernation, is reversed in early arousal. This may facilitate an increase in muscle metabolism and the contribution of maximal shivering thermogenesis to rewarming of the animal.Abbreviations Im dissociation ratio of protein imidazole buffergroups - NST non-shivering thermogenesis - BAT brown adipose tissue - dp H/dT temperature coefficient of pH - pH i intracellular pH - 31 P NMR 31Phosphorus nuclear magnetic resonance - P i chemical shift of inorganic phosphate relative to PCr - PCr phosphocreatine - T b body temperature - T re rectal temperature - T sh subcutaneous shoulder temperature - T a ambient temperature  相似文献   

9.
Summary Values for basal metabolism, standard tidal volume (V T), standard minute volume ( ), and mean extraction efficiency (EO2) in the thermal neutral zone (TNZ) inAgapornis roseicollis (1.84 ml·min–1; 0.95 ml·br–1, STPD; and 33.3 ml·min–1, STPD; and 22.5%; respectively) were all very similar to values for these parameters previously measured inBolborhynchus lineola, a similarly sized, closely related species from a distinctly different habitat.Having both a lower critical temperature (Tlc) below and an upper critical temperature (Tuc) above those ofB. lineola, the TNZ ofA. roseicollis extended from 25° to at least 35°C. The thermal conductance below the TNZ ofA. roseicollis was 14% less than that ofB. lineola. Therefore, at 5°C the standard metabolic rate (SMR) of the former is 17% less than that of the latter, and at 35°C it is 20% less. At 5°CA. roseicollis has a lower EO2 and at 35°C a higher EO2 than that ofB. lineola. The patterns of resting energy metabolism and of ventilation ofA. roseicollis and ofB. lineola are consistent with the former species being better suited to living in a more variable thermal environment than the latter.MeanV T has a weak positive correlation with the rate of oxygen consumption ( ) at a constant ambient temperature (T a) but a much stronger correlation when resting increases in response to a decrease inT a.V t is the only ventilatory parameter which is linearly correlated toT a from 35° to –25°C. The data suggest thatT a may have a regulatory effect onV T somewhat independent of or .  相似文献   

10.
Ammonium assimilation was studied in a nitrogenfixing Arthrobacter strain grown in both batch and ammonium-limited continuous cultures. Arthrobacter sp. fluorescens grown in nitrogen-free medium or at low ammonium levels assimilated NH 4 + via the glutamine synthetase/glutamate synthase pathway. When ammonium was in excess it was assimilated via the alanine dehydrogenase pathway. Very low levels of glutamate dehydrogenase were found, irrespective of growth conditions.Abbreviations GS glutamine synthetase - GOGAT glutamine oxoglutarate aminotransferase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - GOT glutamate oxaloacetate transaminase - GPT glutamate pyruvate transaminase  相似文献   

11.
Summary Evaporative water loss (EWL), oxygen concumption , and body temperature (Tb) of Anna's Hummingbirds (Calypte anna; ca. 4.5g) were measured at combinations of ambient temperature (Ta) and water vapor density (va) ranging from 20 to 37 °C and 2 to 27 g·m-3, respectively. The EWL decreased linearly with increasing va at all temperatures. The slopes of least squares regression lines relating EWL to va at different temperatures were not significantly different and averaged-0.50 mg H2O·m-3·g-2·h-1 (range:-0.39 to-0.61). Increased va restricted EWL in C. anna more than has been reported for other endotherms in dry air. The percent of metabolic heat production dissipated by evaporation ( ) was lower than that of other birds in dry air, but higher than that for other birds at high humidity when Ta 33 °C. When Ta>33 °C the effect of humidity on was similar to that in other birds. Calypte anna might become slightly hyperthermic at Ta>37 °C, which could augment heat transfer by increasing the Tb-Ta gradient. Body temperature for C. anna in this study was 43 °C (intramuscular) at Tas between 25 and 35 °C, which is above average for birds. It is estimated that field EWL is less than 30% of daily water loss in C. anna under mild temperature conditions (<35 °C).Abbreviations BMR basal metabolic rate - EWL evaporative water loss - percent of metabolic heat production dissipated by evaporation - ambient water vapor density - body surface water vapor density - RMR resting metabolic rate - Ta ambient-temperature - Tb body temperature - Td dew-point temperature - TNZ thermoneutral zone - Ts body surface temperature - carbon dioxide production - oxygen consumption  相似文献   

12.
Summary Growth of Candida valida on ethanol in pH-auxostat and chemostat has been studied. Maximal growth rate, m, and cell biomass yield, Y s, display the Arrhenius dependence on temperature within the ranges 18°–30° C and 30°–36° C and an abrupt fall above 36° C. The temprature dependence of both parameters has breaks at 30° C and 36° C. Activation energies have been measured for both m and Y s. The reason for a weaker effect of temperature on Y s than on m is discussed.  相似文献   

13.
Summary Protein synthesis (measured by 3H-leucine incorporation) by catfish hepatocytes in culture was enhanced when trace amounts of catfish serum were added. Serum from 15°C-acclimated fish was significantly more effective than serum from 25°C-acclimated fish.Total protein content of the cells was slightly diminished; DNA content was not altered.Added triiodothyronine (T3) significantly reduced protein synthesis by cultured hepatocytes, more at 25°C than at 15°C culture. Threshold concentration of T3 was 10–9 M.Removal of T3 from serum by exchange resin resulted in increased protein synthesis. Addition of T3 to that preparation decreased protein synthesis.The concentration of T3 in serum from 25°C-acclimated catfish is three times greater than the concentration in serum from 15°C-acclimated fish.Increase in protein synthesis after removal of T3 suggests that there is a blood-borne stimulating factor, more active in cold- than in warm-acclimated fish. The stimulating substance was present after dialysis (2000 Da cutoff) and was partially inactivated by heat.Insulin stimulated protein synthesis; salmon insulin was more effective than bovine insulin. Insulin content did not differ in serum from 15°C- and 25°C-fish.The effects of growth hormone and prolactin were equivocal or negative.The inhibitory effect of T3 may explain the reduction in metabolism during warm-acclimation. The nature of a stimulating hormone in cold acclimation is unknown.Abbreviations DNA desoxyribonucleic acid - DPM desintegrations per minute - GH growth hormone - HPLC high performance liquid chromatography - LDH lactate dehydrogenase - MEM minimal essential medium - PBS phosphate buffered saline - POPOP 1,4-bis [5-phenyl-2-oxazolyl]benzene 2,2-p-phenylene-bis[5-phenyloxazole] - PPO 2,5-diphenyloxazole - RIA radioimmunoassay - TCA trichloroacetic acid - T 3 3,5,5-triiodothyronine - T 4 thyroxine - VO 2 oxygen consumption  相似文献   

14.
The construction of the horizontal rotating tubular bioreactor (HRTB) represents a combination of a thin-layer bioreactor and a biodisc reactor. The bioreactor was made of a plastic tube whose interior was divided by the O-ring shaped partition walls. For the investigation of mixing properties in HRTB the temperature step method was applied. The temperature change in the bioreactor as a response to a temperature step in the inlet flow was monitored by six Pt-100 sensors (t 90 response time 0.08 s and resolution 0.002 °C) which were connected with an interface unit and personal computer. Mixing properties of the bioreactor were modeled using the modified tank in series concept which divided the bioreactor into ideally mixed compartments. A mathematical mixing model with simple flow was developed according to the physical model of the compartments network and corresponding heat balances. Numerical integration of an established set of differential equations was done by the Runge-Kutt-Fehlberg method. The final mathematical model with simple flow contained four adjustable parameters (N1,Ni, F cr andF p ) and five fixed parameters.List of Symbols A u m2 inner surface of bioreactor's wall - A ui m2 i-th part of inner surface of bioreactor's wall - A v m2 outlet surface of bioreactor's wall - A vi m2 i-th part of outlet surface of bioreactor's wall - C p kJ kg–1 K–1 heat capacity of liquid - C pr kJ kg–1 K–1 heat capacity of bioreactor's wall - D h–1 dilution rate - E °C °C–1 h–1 error of mathematical model - F cr dm3s–1 circulation flow in the model - F p dm3 s–1 back flow in the model - F t dm3s–1 inlet flow in the bioreactor - I °C intensity of temperature step, the difference in temperature between the temperature of the inlet liquid flow and the temperature of liquid in the bioreactor before the temperature step - K1 Wm–2K–1 heat transfer coefficient between the liquid and bioreactor's wall - K2 Wm–2K–1 heat transfer coefficient between the bioreactor's wall and air - m s kg mass of bioreactor's wall - L m length of bioreactor - L k m wetted perimeter of bioreactor - n min–1 rotational speed of bioreactor - n s number of temperature sensors - N1 number of cascades - Ni number of compartments inside the cascade - Nu Nusselt number - Pr Prandtl number - r u m inner diameter of bioreactor - r v m outside diameter of bioreactor - Re Reynolds number - s(t) step function - t s time - T °C temperature - T c °C calculated temperature - T m °C measured temperature - T N1,Ni °C temperature of liquid in a defined compartment inside cascade - T N1,S °C temperature of defined part of bioreactor's wall - T S °C temperature of bioreactor's wall - T v °C temperature of liquid in bioreactor - T z °C temperature of surrounding air - V t dm3 volume of liquid in the bioreactor Greek Symbols kJm–1s–1 K–1 thermal conductivity of liquid in the bioreactor - kgm–3 density of liquid in the bioreactor - m2s–1 kinematic viscosity of liquid in the bioreactor Matrix Coefficient B - C - D - E B+C+D - G1 - G2 - G3 - A ui - A vi - Q 1 - Q 2 - Q 3   相似文献   

15.
Summary Germination ofBacillus subtilis spores was initiated by L-Ala and competitively inhibited by D-Ala, suggesting the presence of an alanine receptor. The spores showed alanine racemase activity in the spore coat. To investigate the role of alanine racemase (L D) on germination, net racemase activity was determined using diphenylamine as a germination inhibitor and germination was measured using D-penicillamine as a racemase inhibitor. Apparent affinity of L-Ala to the germinant receptor was more than 1000 times higher than that to the racemase. Germination increased in the presence of D-penicillamine, when the concentration of L-Ala was low and that of spores was high. Racemase activity was optimal at 65°C at pH 9.0 and germination at 43°C at pH 7.2. Under unfavorable growth conditions such as high population of spores in limited nutrients, high temperature and high pH, spore alanine racemase converted the germinant actively to the inhibitor and this conversion may regulate germination for survival of the population.  相似文献   

16.
Summary Adelie penguins (Pygoscelis adeliae) experience a wide range of ambient temperatures (T a) in their natural habitat. We examined body temperature (T b), oxygen consumption ( ), carbon dioxide production ( ), evaporative water loss ( ), and ventilation atT a from –20 to 30 °C. Body temperature did not change significantly between –20 and 20°C (meanT b=39.3°C).T b increased slightly to 40.1 °C atT a=30°C. Both and were constant and minimal atT a between –10 and 20°C, with only minor increases at –20 and 30°C. The minimal of adult penguins (mean mass 4.007 kg) was 0.0112 ml/[g·min], equivalent to a metabolic heat production (MHP) of 14.9 Watt. The respiratory exchange ratio was approximately 0.7 at allT a. Values of were low at lowT a, but increased to 0.21 g/min at 30°C, equivalent to 0.3% of body mass/h. Dry conductance increased 3.5-fold between –20 and 30°C. Evaporative heat loss (EHL) comprised about 5% of MHP at lowT a, rising to 47% of MHP atT a=30°C. The means of ventilation parameters (tidal volume [VT], respiration frequency [f], minute volume [I], and oxygen extraction [ ]) were fairly stable between –20 and 10°C (VT did not change significantly over the entireT a range). However, there was considerable inter- and intra-individual variation in ventilation patterns. AtT a=20–30°C,f increased 7-fold over the minimal value of 7.6 breaths/min, and I showed a similar change. fell from 28–35% at lowT a to 6% atT a=30°C.Abbreviations C thermal conductance - EHL evaporative heat loss - oxygen extraction - f respiratory frequency - MHP metabolic heat production - evaporative water loss - LCT lower critical temperature - RE respiratory exchange ratio - T a ambient temperature - T b body temperature - rate of oxygen consumption - rate of carbon dioxide production - I inspiratory minute volume - VT tidal volume  相似文献   

17.
Photosynthetically active membranes have been prepared from the thermophilic cyanobacterium Mastigogladus laminosus by treatment with lysozyme. The membranes were active in electron transport through photosystem I and II as well as in photophosphorylation and proton uptake. Cells were grown at 40°, 45° and 55°C respectively. The temperature optimum of oxygen evolution of whole cells was about 10°C higher than the growth temperature. In isolated membranes the temperature optimum for cyclic photophosphorylation was identical to the growth temperature of the cells whereas the optimum for photosystem II electron transport never exceeded 40°C. Photophosphorylation was inhibited by N, N-dicyclohexyl carbodiimide (DCCD), carbonyl-cyanide-m-chlorophenylhydrazone and NH4Cl, whereas proton uptake was enhanced by DCCD. Electron transport was slightly inhibited by these treatments. The membranes could be stored for several weeks at-20°C in 50% glycerol without any loss in the activities.Abbreviations DPIP 2,6-dichlorophenolindophenol - CCCP Carbonyl-cyanide-m-chlorophenylhydrazone - DCCD N,N-dicyclohexyl carbodiimide - PMS N-methylphenazonium methosulfate - DCMU 3-(3-4-dichlorophenyl)-1,1-dimethylurea - TMP 20 mM Tris-HCl buffer pH 7.8, 10 mM MgCl2, 5 mM phosphate buffer pH 7.8  相似文献   

18.
Summary Whole cells of Saccharomyces cerevisiae were entrapped in polymers of 2-hydroxyethylmetha-crylate and sucrose hydrolysis catalysed by its invertase was investigated.Analysis of the experimental results confirmed that diffusional resistance to mass transfer of reactant and product was not induced by immobilization.For the yeast cells in the hydrogel, invertase activity obeyed a Michaelis-Menten kinetic and the value of Km (40 mM) was the same as that for yeast cells in bulk phase.The recovery of biocatalyst activity ranged between 17% and 23%, depending on immobilization temperature; the optimum pH range was found to be slightly wider.Storage stability at refrigerator temperature was quite satisfactory; invertase half-life was 267 days. Operational stability of immobilized cells at 45°C (half-life 110 days) was almost twice that of free cells.Finally, cell distribution in the polymer, observed with a scanning electron microscope, was found to be uniform.Symbols C Active cell concentration, g/mg - Ea Activation energy, cal/mol - Kd kinetic constant of the enzyme deactivation reaction, h - Km Michaelis constant, mM - Nc Active cell amount, mg - r Enzymatic reaction rate, mol/min - S Substrate concentration, mM - t Reaction time, h or days - T Reaction temperature, °C or °K - Tp Polymerization temperature, °C - V max Kinetic constant of enzymatic reaction, mol/min  相似文献   

19.
To assess the long-term effect of increased CO2 and temperature on plants possessing the C3 photosynthetic pathway, Chenopodium album plants were grown at one of three treatment conditions: (1) 23 °C mean day temperature and a mean ambient partial pressure of CO2 equal to 350 bar; (2) 34 °C and 350 bar CO2; and (3) 34 °C and 750 bar CO2. No effect of the growth treatments was observed on the CO2 reponse of photosynthesis, the temperature response of photosynthesis, the content of Ribulose-1,5-bisphosphate carboxylase (Rubisco), or the activity of whole chain electron transport when measurements were made under identical conditions. This indicated a lack of photosynthetic acclimation in C. album to the range of temperature and CO2 used in the growth treatments. Plants from every treatment exhibited similar interactions between temperature and CO2 on photosynthetic activity. At low CO2 (< 300 bar), an increase in temperature from 25 to 35 °C was inhibitory for photosynthesis, while at elevated CO2 (> 400 bar), the same increase in temperature enhanced photosynthesis by up to 40%. In turn, the stimulation of photosynthesis by CO2 enrichment increased as temperature increased. Rubisco capacity was the primary limitation on photosynthetic activity at low CO2 (195 bar). As a consequence, the temperature response of A was relatively flat, reflecting a low temperature response of Rubisco at CO2 levels below its km for CO2. At elevated CO2 (750 bar), the temperature response of electron transport appeared to control the temperature dependency of photosynthesis above 18 °C. These results indicate that increasing CO2 and temperature could substantially enhance the carbon gain potential in tropical and subtropical habitats, unless feedbacks at the whole plant or ecosystem level limit the long-term response of photosynthesis to an increase in CO2 and temperature.Abbreviations A net CO2 assimilation rate - C a ambient partial pressure of CO2 - C i intercellular partial pressure of CO2 - Rubisco Ribulose-1,5-bisphosphate carboxylase - VPD vapor pressure difference between leaf and air  相似文献   

20.
The cyanobacterium Spirulina platensis was used to verify the possibility of employing microalgal biomass to reduce the contents of nitrate and phosphate in wastewaters. Batch tests were carried out in 0.5 dm3 Erlenmeyer flasks under conditions of light limitation (40 mol quanta m–2 s–1) at a starting biomass level of 0.50 g/dm3 and varying temperature in the range 23–40°C. In this way, the best temperature for the growth of this microalga (30°C) was determined and the related thermodynamic parameters were estimated. All removed nitrate was used for biomass growth (biotic removal), whereas phosphate appeared to be removed mainly by chemical precipitation (abiotic removal). The best results in terms of specific and volumetric growth rates ( =0.044 day–1, Q x =33.2 mg dm–3 day–1) as well as volumetric rate and final yield of nitrogen removal ( =3.26 mg dm–3 day–1, =0.739) were obtained at 30°C, whereas phosphorus was more effectively removed at a lower temperature. In order to simulate full-scale studies, batch tests of nitrate and phosphate removal were also performed in 5.0 dm3 vessels (mini-ponds) at the optimum temperature (30°C) but increasing the photon fluence rate to 80 mol quanta m–2 s–1 and varying the initial biomass concentration from 0.25 to 0.86 g/dm3. These additional tests demonstrated that an increase in the inoculum level up to 0.75 g/dm3 enhanced both NO3 and PO4 3– removal, confirming a strict dependence of these processes on biomass activity. In addition, the larger surface area of the ponds and the higher light intensity improved removal yields and kinetics compared to the flasks, particularly concerning phosphorus removal ( =0.032–0.050 day–1, Q x =34.7–42.4 mg dm–3 day–1, =3.24–4.06 mg dm–3 day–1, =0.750–0.879, =0.312–0.623 mg dm–3 day–1, and =0.224–0.440).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号