首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic isothiocyanates (ITCs) are dietary components present in cruciferous vegetables. The purpose of this investigation was to examine the cytotoxicity of 1-naphthyl isothiocyanate (NITC), benzyl isothiocyanate (BITC), beta-phenethyl isothiocyanate (PEITC), and sulforaphane in human breast cancer MCF-7 and human mammary epithelium MCF-12A cell lines, as well as in a second human epithelial cell line, human kidney HK-2 cells. The cytotoxicity of NITC, BITC, PEITC, and sulforaphane, as well as the cytotoxicity of the chemotherapeutic agents daunomycin (DNM) and vinblastine (VBL), were examined in MCF-7/sensitive (wt), MCF-7/Adr (which overexpresses P-glycoprotein), MCF-12A, and HK-2 cells. Cell growth was determined by a sulforhodamine B assay. The IC50 values for DNM and VBL in MCF-7/Adr cells were 7.12 +/- 0.42 microM and 0.106 +/- 0.004 microM (mean +/- SE) following a 48-hr exposure; IC50 values for BITC, PEITC, NITC, and sulforaphane were 5.95 +/- 0.10, 7.32 +/- 0.25, 77.9 +/- 8.03, and 13.7 +/- 0.82 microM, respectively, with similar values obtained in MCF-7/wt cells. Corresponding values for BITC, PEITC, NITC, and sulforaphane in MCF-12A cells were 8.07 +/- 0.29, 7.71 +/- 0.07, 33.6 +/- 1.69, and 40.5 +/- 1.25 microM, respectively. BITC and PEITC can inhibit the growth of human breast cancer cells as well as human mammary epithelium cells at concentrations similar to those of the chemotherapeutic drug DNM. Sulforaphane and NITC exhibited higher IC50 values. The effect of these ITCs on cell growth may contribute to the cancer chemopreventive properties of ITCs by suppressing the growth of preclinical tumors, and may indicate a potential use of these compounds as chemotherapeutic agents in cancer treatment.  相似文献   

2.
Docetaxel (Doc) and adriamycin (Adr) are two of the most effective chemotherapeutic agents in the treatment of breast cancer. However, their efficacy is often limited by the emergence of multidrug resistance (MDR). The purpose of this study was to investigate MDR mechanisms through analyzing systematically the expression changes of genes related to MDR in the induction process of isogenic drug resistant MCF-7 cell lines. Isogenic resistant sublines selected at 100 and 200 nM Doc (MCF-7/100 nM Doc and MCF-7/200 nM Doc) or at 500 and 1,500 nM Adr (MCF-7/500 nM Adr and MCF-7/1,500 nM) were developed from human breast cancer parental cell line MCF-7, by exposing MCF-7 to gradually increasing concentrations of Doc or Adr in vitro. Cell growth curve, flow cytometry and MTT cytotoxicity assay were preformed to evaluate the MDR characteristics developed in the sublines. Some key genes on the pathways related to drug resistance (including drug-transporters: MDR1, MRP1 and BCRP; drug metabolizing-enzymes: CYP3A4 and glutathione S-transferases (GST) pi; target genes: topoisomerase II (TopoIIα) and Tubb3; apoptosis genes: Bcl-2 and Bax) were analyzed at RNA and protein expression levels by real time RT-qPCR and western blot, respectively. Compared to MCF-7/S (30.6 h), cell doubling time of MCF-7/Doc (41.6 h) and MCF-7/Adr (33.8 h) were both prolonged, and the cell proportion of resistant sublines in G1/G2 phase increased while that in S-phase decreased. MCF-7/100 nM Doc and MCF-7/200 nM Doc was 22- and 37-fold resistant to Doc, 18- and 32-fold to Adr, respectively. MCF-7/500 nM Adr and MCF-7/1,500 nM Adr was 61- and 274-fold resistant to Adr, three and 12-fold to Doc, respectively. Meantime, they also showed cross-resistance to the other anticancer drugs in different degrees. Compared to MCF-7/S, RT-qPCR and Western blot results revealed that the expression of MDR1, MRP1, BCRP, Tubb3 and Bcl-2 were elevated in both MCF-7/Doc and MCF-7/Adr, and TopoIIα, Bax were down-regulated in both the sublines, while CYP3A4, GST pi were increased only in MCF-7/Doc and MCF-7/Adr respectively. Furthermore, the changes above were dose-dependent. The established MCF-7/Doc or MCF-7/Adr has the typical MDR characteristics, which can be used as the models for resistance mechanism study. The acquired process of MCF-7/S resistance to Doc or Adr is gradual, and is complicated with the various pathways involved in. There are some common resistant mechanisms as well as own drug-specific changes between both the sublines.  相似文献   

3.
4.
A selected ion flow tube-chemical ionization mass spectrometric method is presented for the first determination of acrolein metabolically produced in biological tissues. Acrolein in aqueous samples (2.5 ml) is preconcentrated by distillation and directly analyzed using gas-phase proton transfer from H3O+. This method provides sensitive detection of acrolein with the method detection limit of 15 nM at the 99% confidence level. Detection is linear up to the highest concentration studied (13.5 microM, R2 = 0.998). Acrolein levels are determined in doxorubicin-sensitive (MCF-7) and doxorubicin-resistant (MCF-7/Adr) human breast cancer cells in vitro. The intracellular acrolein concentrations differ insignificantly: 0.61 microM for sensitive cells and 0.54 microM for resistant cells. Treatment with a physiological concentration of doxorubicin (0.5 microM) for 24 h at 37 degrees C increased acrolein levels by factors of 2.6 and 1.9 for MCF-7 and MCF-7/Adr cells, respectively. The differential enhancement observed is consistent with the lower levels of enzymes that neutralize oxidative stress in sensitive MCF-7 cells and overexpression of an active drug efflux pump P-170 glycoprotein in resistant MCF-7/Adr cells.  相似文献   

5.
In the present study we used human breast cancer cell lines to assess the influence of ceramide and glucosylceramide (GC) on expression of MDR1, the multidrug resistance gene that codes for P-glycoprotein (P-gp), because GC has been shown to be a substrate for P-gp. Acute exposure (72 h) to C8-ceramide (5 microg/ml culture medium), a cell-permeable ceramide, increased MDR1 mRNA levels by 3- and 5-fold in T47D and in MDA-MB-435 cells, respectively. Acute exposure of MCF-7 and MDA-MB-231 cells to C8-GC (10 microg/ml culture medium), a cell-permeable analog of GC, increased MDR1 expression by 2- and 4- fold, respectively. Chronic exposure of MDA-MB-231 cells to C8-ceramide for extended periods enhanced MDR1 mRNA levels 45- and 390-fold at passages 12 and 22, respectively, and also elicited expression of P-gp. High-passage C8-ceramide-grown MDA-MB-231 (MDA-MB-231/C8cer) cells were more resistant to doxorubicin and paclitaxel. Incubation with [1-(14)C]C6-ceramide showed that cells converted short-chain ceramide into GC, lactosylceramide, and sphingomyelin. When challenged with 5 mug/ml [1-(14)C]C6-ceramide, MDA-MB-231, MDA-MB-435, MCF-7, and T47D cells took up 31, 17, 21, and 13%, respectively, and converted 82, 58, 62, and 58% of that to short-chain GC. Exposing cells to the GCS inhibitor, ethylenedioxy-P4, a substituted analog of 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol, prevented ceramide's enhancement of MDR1 expression. These experiments show that high levels of ceramide and GC enhance expression of the multidrug resistance phenotype in cancer cells. Therefore, ceramide's role as a messenger of cytotoxic response might be linked to the multidrug resistance pathway.  相似文献   

6.
CD95 and ceramide are known to be involved in the apoptotic mechanism. The triggering of CD95 induces a cascade of metabolic events that progressively and dramatically modifies the cell shape by intense membrane blebbing, leading to apoptotic bodies production. Although the CD95 pathway has been abundantly described in normal thyrocytes, the effects of cell permeable synthetic ceramide at morphological and biochemical levels are not fully known. In the present study, we show that thyroid follicular cells (TFC) exposed to 20 microM of C(2)-ceramide for 4 h are characterized by morphological features of necrosis, such as electron-lucent cytoplasm, mitochondrial swelling, and loss of plasma membrane integrity without drastic morphological changes in the nuclei. By contrast, TFC treated with 2 microM of C(2)-ceramide for 4 h are able to accumulate GD3, activate caspases cascade, and induce apoptosis. Furthermore, we provide evidence that 20 microM of C(2)-ceramide determine the destruction of mitochondria and are not able to induce PARP cleavage and internucleosomal DNA fragmentation, suggesting that the apoptotic program is not activated during the death process and nuclear DNA is randomly cleaved as the consequence of cellular degeneration. Pretreatment with 30 microM of zVAD-fmk rescued TFC from 2 microM of C(2)-ceramide-induced apoptosis, whereas, 20 microM of C(2)-ceramide exposure induced necrotic features. Deltapsi(m) was obviously altered in cells treated with 20 microM of C(2)-ceramide for 4 h (75% +/- 3.5%) compared with the low percentage (12.5% +/- 0.4%) of cells with altered Deltapsi(m) exposed to 2 microM of C(2)-ceramide. Whereas, only 20% +/- 1.1% of cells treated with anti-CD95 for 1 h showed altered Deltapsi(m). Additionally, Bax and Bak, two pro-apoptotic members, seem to be not oligomerized in the mitochondrial membrane following ceramide exposure. These results imply that high levels of exogenous ceramide contribute to the necrotic process in TFC, and may provide key molecular basis to the understanding of thyroid signaling pathways that might promote the apoptotic mechanism in thyroid tumoral cells.  相似文献   

7.
We have previously reported that Lj-RGD3, a novel RGD-toxin protein, was isolated from the buccal gland of Lampetra japonica. The recombinant protein rLj-RGD3 has anti-invasive and anti-adhesive activity in tumor cells (HeLa cells) and endothelial cells (ECV304 cells) in vitro, and inhibits αvβ3, αvβ5, and β1 integrin-mediated adhesion. In this study, we investigated the bioactivity of rLj-RGD3 in the drug-resistant MCF-7/Adr breast carcinoma cell line and drug-sensitive parental line MCF-7, and found that rLj-RGD3 inhibited the growth of both cell lines. Biological function studies revealed that rLj-RGD3 could induce the apoptosis in MCF-7/Adr, which was more prevalent than that in the drug-sensitive parental line MCF-7. In addition, rLj-RGD3 inhibited the adhesion of MCF-7/Adr cells to fibronectin. Furthermore, rLj-RGD3 prevented invasion of MCF-7/Adr cells through an artificial matrigel basement membrane. In summary, rLj-RGD3 may be used as a potential drug in multidrug-resistant breast cancer therapy.  相似文献   

8.
The occurrence of multidrug resistance (MDR) is the major obstacle to successful anthracycline-based cancer chemotherapy. In the present study, we assessed the effects of Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, TPL), a piperidine nitroxide with growth-inhibitory properties in tumor cell lines, on a number of molecular mechanisms involved in the resistance of human breast adenocarcinoma cell lines to doxorubicin (DOX). Cytotoxicity studies in MCF-7 wildtype and their MDR variant MCF-7 Adr(R) cells showed a synergistic effect between TPL and DOX when exposure to TPL preceded or was simultaneous with DOX treatment in MCF-7 Adr(R) cells. This effect of TPL seems to be due in part to its ability to increase peroxide levels and to deplete cellular glutathione pools. In addition, TPL increased DOX accumulation in MCF-7 Adr(R) cells by interfering with P-glycoprotein-mediated DOX efflux, as evidenced using a specific antibody that recognizes the active form of the protein. TPL was also found to affect the expression levels of proteins involved in response to drug treatment (e.g., p53, bcl2, bax, p21). Taken together, our results indicate that TPL is a potential new agent that may improve the clinical effect of DOX in tumors exhibiting a MDR phenotype.  相似文献   

9.
Adriamycin (Adr) and docetaxel (Doc) are two chemotherapeutic agents commonly used in the treatment of breast cancer. However, patients with breast cancer who are treated by the drugs often develop resistance to them and some other drugs. Recently studies have shown that microRNAs (miRNAs, miRs) play an important role in drug-resistance. In present study, miRNA expression profiles of MCF-7/S and its two resistant variant MCF-7/Adr and MCF-7/Doc cells were analyzed using microarray and the results were confirmed by real-time quantitative polymerase chain reaction. Here, 183 differentially expressed miRNAs were identified in the two resistant sublines compared to MCF-7/S. Then, five up-regulated miRNAs (miR-100, miR-29a, miR-196a, miR-222 and miR-30a) in both MCF-7/Adr and MCF-7/Doc were selected to explore their roles in acquisition of drug-resistance using transfection experiment. The results showed that miR-222 and miR-29a mimics and inhibitors had partially changed the drug-resistance of breast cancer cells, which was also confirmed by apoptosis assay. Western blot results suggested that miR-222 and -29a could regulate the expression of PTEN, maybe through which the two miRNAs conferred Adr and Doc resistance in MCF-7 cells. Finally, pathway mapping tools were employed to further analyze signaling pathways affected by the two miRNAs. In summary, this study demonstrates that altered miRNA expression pattern is involved in acquiring resistance to Adr and Doc in breast cancer MCF-7 cells, and that there are some miRNAs who displayed consistent up- or down-regulated expression changes in the two resistant sublines. The most importance is that we identify two miRNAs (miR-222 and miR-29a) involved in drug-resistance, at least in part via targeting PTEN.  相似文献   

10.
Fluorescent D-erythro-sphingosines bearing the diphenyl-1,3,5-hexatrienyl group (DPH) as fluorophore were synthesized for the first time. Two isomers, the DPH-4(E)- and DPH-4(Z)-sphingosine [(2S,3R)-2-amino-6-(p-(18-phenyl)-13,15,17(E,E,E)-hexatrienyl)phenylh ex- 4(E/Z)-en-1,3-diol], and the N-hexanoyl derivative of DPH-4(E)-sphingosine (C6-DPH-ceramide) were studied for their distribution and metabolism in cultured human skin fibroblasts. Both DPH-sphingosines (4-trans and 4-cis) were not significantly acylated to ceramide in living cells, but converted to ceramide in vitro by microsomal protein from mouse brain, although slower than natural D-erythro-sphingosine. DPH-4(Z)-sphingosine showed the same Km like D-erythro-sphingosine (155 microM), but had a lower Vmax value, 0.85 instead of 1.9 nmol/mgh. An even poorer substrate was DPH-4(E)-sphingosine with a Km of 220 microM and a Vmax of 0.81 nmol/mgh. In cultured human fibroblasts, C6-DPH-ceramide was rapidly anabolized mainly to sphingomyelin. In addition, small quantities of glucosylceramide were also formed. DPH-sphingosines were easily incorporated into plasma membranes of cultured fibroblasts and are likely to undergo flip flop since intracellular membranes also became labeled, when endocytosis was blocked at low temperature (7 degrees C). The N-hexanoyl-DPH-trans-sphingosine, C6-DPH-ceramide, like NBD-C6-ceramide (Lipsky, N. G., R. E. Pagano: Science 228, 745-747 (1985)) labeled intracellular membranes at 7 degrees C and predominantly Golgi membranes at 37 degrees C. Like NBD-C6-ceramide (Pagano, R. E., M. A. Sepanski, O. C. Martin: J. Cell Biol. 109, 2067-2079 (1989)) the C6-DPH-ceramide also stained the Golgi complex in prefixed cells whereas DPH-trans- and DPH-cis-sphingosine did not, indicating that it is the ceramide structure rather than the fluorophore itself which is responsible for this staining. DPH-sphingosine opens a way for chemical synthesis of DPH-glycolipids and DPH-sphingomyelin which would well serve as donors in fluorescence energy transfer experiments to study possible sphingolipid clustering in biological membranes.  相似文献   

11.
Continuous exposure of breast cancer cells to adriamycin induces high expression of P-gp and multiple drug resistance. However, the biochemical process and the underlying mechanisms for the gradually induced resistance are not clear. To explore the underlying mechanism and evaluate the anti-tumor effect and resistance of adriamycin, the drug-sensitive MCF-7S and the drug-resistant MCF-7Adr breast cancer cells were used and treated with adriamycin, and the intracellular metabolites were profiled using gas chromatography mass spectrometry. Principal components analysis of the data revealed that the two cell lines showed distinctly different metabolic responses to adriamycin. Adriamycin exposure significantly altered metabolic pattern of MCF-7S cells, which gradually became similar to the pattern of MCF-7Adr, indicating that metabolic shifts were involved in adriamycin resistance. Many intracellular metabolites involved in various metabolic pathways were significantly modulated by adriamycin treatment in the drug-sensitive MCF-7S cells, but were much less affected in the drug-resistant MCF-7Adr cells. Adriamycin treatment markedly depressed the biosynthesis of proteins, purines, pyrimidines and glutathione, and glycolysis, while it enhanced glycerol metabolism of MCF-7S cells. The elevated glycerol metabolism and down-regulated glutathione biosynthesis suggested an increased reactive oxygen species (ROS) generation and a weakened ability to balance ROS, respectively. Further studies revealed that adriamycin increased ROS and up-regulated P-gp in MCF-7S cells, which could be reversed by N-acetylcysteine treatment. It is suggested that adriamycin resistance is involved in slowed metabolism and aggravated oxidative stress. Assessment of cellular metabolomics and metabolic markers may be used to evaluate anti-tumor effects and to screen for candidate anti-tumor agents.  相似文献   

12.
C8-ceramide, a synthetic cell-permeable analog of endogenous ceramides, interfered with cell proliferation, and was cytotoxic to papilloma virus-containing human cervix carcinoma cells, CALO, INBL, and HeLa, that match two clinical stages of tumor progression. C8-ceramide (3 microM) markedly reduced the tumor cell number after 48 h of treatment, an effect that endured even after the removal of C8-ceramide. The carcinoma cells showed morphologic changes, characteristic of necrosis and released lactate dehydrogenase (LDH). A biologically inactive analog C8-dihydro-ceramide had no effect on cell viability in any of the cell lines tested. Seventy-two hours after C8-ceramide treatment none of the biochemical and morphological markers characteristic of apoptosis: (a) nuclear chromatin condensation, (b) DNA fragmentation, (c) proteolysis of the caspase-3 substrate poly-(ADP-ribose)-polymerase (PARP), and (d) appearance of phosphatidylserine on the external cell membrane, were observed. C8-ceramide had no effect on human cervix fibroblasts and induced a mild reduction (30%) in the proliferation of normal human cervix epithelia and HeLa cells (IV-B metastatic stage). The cytotoxicity of C8-ceramide was restricted to CALO (early II-B) and INBL (IV-A non-metastatic) carcinoma cells. The possible application of ceramide in the treatment of early stages of cervical cancer is discussed.  相似文献   

13.
The activity of N-hexanoyl-D-erythro-sphingosine, a C6-ceramide against angiogenesis was tested in vitro and in vivo. The effect of ceramide in inhibiting MCF-7 cancer cells was also determined. The aim of this study was to potentiate the effect of ceramide as anti-angiogenic compound that can regulate tumor induced angiogenesis.C6-ceramide inhibited vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cells (HUVEC) tube formation in a dose-dependent manner within 24 hours. Ceramide at concentrations between 12.5 and 25 μM inhibited the viability of MCF-7 cells and reduced VEGF-induced cell migration in 24 hours. At 50 μM, ceramide induced MCF-7 cell death via autophagy as demonstrated by accumulation of MDC in ceramide-treated MCF-7 vacuoles. The expression of VEGF was reduced and the levels of cathepsin D in MCF-7 increased. In vivo, 50 μM ceramide caused a 40% reduction of new vessel formation in the CAM assay within 24 hours. Zebrafish exposed to 100 - 400 μM ceramide had a distinct disruption of blood vessel development at 48 hours post-fertilization. Ceramide-exposed embryos also had primary motoneurons exhibiting abnormal axonal trajectories and ectopic branching. Ceramide induced cell-death was not detected in the zebrafish assay. Collectively, these data indicate that ceramide is a potent anti-angiogenic compound and that the mechanism underlying its anti-angiogenic capabilities does not rely upon the induction of apoptosis.  相似文献   

14.
We have investigated the effects of chemotherapeutic agents such as adriamycin (ADR), camptothecin (CPT), mitomycin-C (MYC-C) and methotrexate (MTX) on the regulation of expression of the tumor susceptibility genes (BRCA1 and BRCA2), and the association of cell cycle progression in human breast cancer and normal breast epithelial cells. Results revealed that the mRNA and protein expression levels of BRCA1/2 were reduced by the treatment of chemotherapeutic agents used in the breast cancer cell lines tested, with ADR being the most effective. The regulation of the cell cycle was dose-dependent and low doses of ADR (1.5 microM) induced G2/M phase arrest whereas a late S phase arrest was observed with a higher dose of ADR (15 microM) in both breast cancer cells (MCF-7 and MDA-MB-231) tested. In addition, a negative correlation was observed between BRCA1/2 mRNA and expressions of the proteins with the cell cycle alterations being regulated by chemotherapeutic agents.  相似文献   

15.
Endocrine therapy is widely accepted for the treatment of hormone receptor-positive breast cancer. However, in many cases eventually resistance will develop and tumor regrows. Combination therapy may be one way to resolve this problem. In the present study we investigated the effect of a combination of the widely used antiestrogen tamoxifen with the endogenous estradiol metabolite 2-methoxyestradiol (2-ME) on the proliferation of human estrogen receptor-positive and receptor-negative breast cancer cells.The receptor-positive cell line MCF-7 and the receptor-negative cell line BM were treated with 4-hydroxytamoxifen (4-OHTam) and 2-methoxyestradiol in the concentration range of 0.8-25 microM alone and equimolar combinations for 4 days. The proliferation of the cells was determined using the ATP-chemosensitivity test.4-Hydroxytamoxifen inhibited proliferation of MCF-7 and BM cells with IC(50) values of 31 and 10 microM, the corresponding figures for 2-methoxyestradiol were 52 and 8 microM. The combination showed IC(50) values of 6 microM and 4 microM.These results indicate that a combination of tamoxifen with 2-methoxyestradiol showed an additive inhibitory effect concerning the proliferation of estrogen receptor-positive and receptor-negative breast cancer cell lines. Thus a combination of these substances may allow ameliorating of adverse events of tamoxifen by reducing its concentrations and probably also drug resistance and should be tested in clinical trials.  相似文献   

16.
Induction of endocytic vesicles by exogenous C(6)-ceramide.   总被引:2,自引:0,他引:2  
Ceramide is a newly discovered second messenger that has been shown to cause cell growth arrest and apoptosis. Here, we present evidence that exogenously added C(6)-ceramide induces enlargement of late endosomes and lysosomes. 10 microM C(6)-ceramide caused the formation of numerous vesicles of varying sizes (2-10 micrometers) in fibroblasts (3T3-L1 and 3T3-F442A), without toxic effects. Vesicle formation induced by C(6)-ceramide was time- and dose-dependent, rapid, and reversible. Numerous small vesicles appeared within 8 h of treatment with 10 microM C(6)-ceramide. They enlarged with time, with large vesicles found in the perinuclear region and small ones observed at the cell periphery. Within 24 h of treatment, approximately 30% of the cells exhibited these vesicles. Removal of ceramide from the culture medium caused disappearance of the vesicles, which reappeared upon readdition of ceramide. Confocal immunofluorescence microscopic analysis using an anti-lysosome-associated membrane protein antibody identified the enlarged vesicles as late endosomes/lysosomes. The fluorescent C(6)-NBD-ceramide, a vital stain for the Golgi apparatus, did not stain these vesicles. The effect on vesicle formation was influenced by ceramide structure; D-erythro-C(6)-ceramide was the most active ceramide analogue tested. Short chain ceramide metabolites, such as sphingosine, sphingosine 1-phosphate, N-hexanoyl-sphingosylphosphorylcholine, N-acetylpsychosine, and C(2)-ceramide G(M3), (G(M3), N-acetylneuraminosyl-alpha(2, 3)-galactosyl-beta(1,4)-glucosylceramide), were inactive in causing vesicle formation when added exogenously. Together, these studies demonstrate that exogenous C(6)-ceramide induces endocytic vesicle formation and causes enlarged late endosomes and lysosomes in mouse fibroblasts.  相似文献   

17.
A senescence-like growth arrest succeeded by recovery of proliferative capacity was observed in MCF-7 breast tumor cells exposed to fractionated radiation, 5 × 2 Gy. Exposure to EB 1089, an analog of the steroid hormone 1, 25 dihydroxycholecalciferol (1, 25 dihydroxy Vitamin D3; calcitriol), prior to irradiation promoted cell death and delayed both the development of a senescent phenotype and the recovery of proliferative capacity. EB 1089 also reduced clonogenic survival over and above that produced by fractionated radiation alone and further conferred susceptibility to apoptosis in MCF-7 cells exposed to radiation. In contrast, EB 1089 failed to enhance the response to radiation (or to promote apoptosis) in normal breast epithelial cells or BJ fibroblast cells. EB 1089 treatment and fractionated radiation additively promoted ceramide generation and suppressed expression of polo-like kinase 1. Taken together, these data indicate that EB 1089 (and 1, 25 dihydroxycholecalciferol or its analogs) could selectively enhance breast tumor cell sensitivity to radiation through the promotion of cell death, in part through the generation of ceramide and the suppression of polo-like kinase.  相似文献   

18.
Ceramide is a bioactive sphingolipid that mediates a variety of cell functions. However, the effects of ceramide on cell growth and the melanogenesis of melanocytes are not known. In the present study, we investigated the actions of cell-permeable ceramide and its possible role in the signaling pathway of a spontaneously immortalized mouse melanocyte cell line, Mel-Ab. Our results show that C2-ceramide inhibits DNA synthesis in Mel-Ab cells and G361 human melanoma cells in a dose-dependent manner. Cell cycle analysis confirmed the inhibition of DNA synthesis by a reduction in the S phase. To investigate the ceramide signaling pathway, we studied whether C2-ceramide is able to influence extracellular signal-regulated kinase (ERK) and/or Akt/protein kinase B (PKB) activation. We demonstrated that phosphorylated Akt/PKB is decreased by C2-ceramide, whereas phosphorylated ERK was only slightly affected. Therefore, the C2-ceramide-induced inactivation of Akt/PKB may be closely related to the reduced cell proliferation of Mel-Ab cells. Furthermore, we assessed the effects of C2-ceramide on the pigmentation of Mel-Ab cells. The results obtained showed that the melanin content of cells was significantly reduced by C2-ceramide at concentrations in the range of 1-10 microM, and that the pigmentation-inhibiting effect of C2-ceramide is much greater than that of kojic acid at 1-100 microM. In addition, we found that the activity of tyrosinase is reduced by C2-ceramide treatment. Our results demonstrate that C2-ceramide reduces the pigmentation of Mel-Ab cells by inhibiting tyrosinase activity.  相似文献   

19.
The sphingolipid ceramide is involved in the cellular stress response. Here we demonstrate that ceramide controls macroautophagy, a major lysosomal catabolic pathway. Exogenous C(2)-ceramide stimulates macroautophagy (proteolysis and accumulation of autophagic vacuoles) in the human colon cancer HT-29 cells by increasing the endogenous pool of long chain ceramides as demonstrated by the use of the ceramide synthase inhibitor fumonisin B(1). Ceramide reverted the interleukin 13-dependent inhibition of macroautophagy by interfering with the activation of protein kinase B. In addition, C(2)-ceramide stimulated the expression of the autophagy gene product beclin 1. Ceramide is also the mediator of the tamoxifen-dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. Monodansylcadaverine staining and electron microscopy showed that this accumulation was abrogated by myriocin, an inhibitor of de novo synthesis ceramide. The tamoxifen-dependent accumulation of vacuoles was mimicked by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase. 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol, tamoxifen, and C(2)-ceramide stimulated the expression of beclin 1, whereas myriocin antagonized the tamoxifen-dependent up-regulation. Tamoxifen and C(2)-ceramide interfere with the activation of protein kinase B, whereas myriocin relieved the inhibitory effect of tamoxifen. In conclusion, the control of macroautophagy by ceramide provides a novel function for this lipid mediator in a cell process with major biological outcomes.  相似文献   

20.
Protein kinase C (PKC) has been considered for a potential target of anticancer chemotherapy. PKC-alpha has been associated with growth and metastasis of some cancer cells. However, the role of PKC-alpha in human breast cancer cell proliferation and anticancer chemotherapy remains unclear. In this study, we examined whether alterations of PKC-alpha by phorbol esters and PKC inhibitors could affect proliferation of human breast cancer MCF-7 cells and the cytotoxic effect of chemotherapeutic agents. Exposure for 24 h to doxorubicin (DOX) and vinblastine (VIN) caused a concentration-dependent reduction in proliferation of MCF-7 cells. However, these two anticancer drugs altered cellular morphology and growth pattern in distinct manners. Phorbol 12,13-dibutyrate (PDBu, 100 nM), which enhanced activities of PKC-alpha, increased cancer cell proliferation and attenuated VIN (1 microM)-induced cytotoxicity. These effects were not affected in the presence of 10 nM staurosporine. Phorbol myristate acetate (PMA, 100 nM) that completely depleted PKC-alpha also enhanced cancer cell proliferation and attenuated VIN-induced cytotoxicity. Three potent PKC inhibitors, staurosporine (10 nM), chelerythrine (5 microM) and bisindolylmaleimide-I (100 nM), had no significant effect on MCF-7 cell proliferation; staurosporine and chelerythrine, but not bisindolylmaleimide-I, attenuated VIN-induced cytotoxicity. Moreover, neither phorbol esters nor PKC inhibitors had an effect on cytotoxic effects of DOX (1 microM) on MCF-7 cell proliferation. Thus, these data suggest that MCF-7 cell proliferation or the anti-cancer action of DOX and VIN on breast cancer cells is independent of PKC-alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号