首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cystic fibrosis (CF) represents one of a number of localized lung and non-lung diseases with an intense chronic inflammatory component associated with evidence of systemic oxidative stress. Many of these chronic inflammatory diseases are accompanied by an array of atherosclerotic processes and cardiovascular disease (CVD), another condition strongly related to inflammation and oxidative stress. As a consequence of a dramatic increase in long-lived patients with CF in recent decades, the specter of CVD must be considered in these patients who are now reaching middle age and beyond. Buttressed by recent data documenting that CF patients exhibit evidence of endothelial dysfunction, a recognized precursor of atherosclerosis and CVD, the spectrum of risk factors for CVD in CF is reviewed here. Epidemiological data further characterizing the presence and extent of atherogenic processes in CF patients would seem important to obtain. Such studies should further inform and offer mechanistic insights into how other chronic inflammatory diseases potentiate the processes leading to CVDs.  相似文献   

2.
Effects of 12 wk exercise training on oxidative stress were examined in elderly humans. We measured oxidative stress during a 45 min cycling test by using antipyrine hydroxylation products. Antipyrine breakdown is independent of blood flow to the liver, which is important during exercise. Furthermore, antipyrine reacts quickly with hydroxyl radicals to form para- and ortho-hydroxyantipyrine. Ortho-hydroxyantipyrine is not formed in man through the mono-oxygenase pathway of cytochrome P450. Twenty subjects (9 women; 60 +/- 3 y) participated in the training program. Thirteen subjects (5 women; 64 +/- 7 y) served as inactive controls. Subjects trained, twice a week for 1 h, at a fitness center. After 12 wk, maximal oxygen uptake (p < .005) and workload capacity (p < .001) were only significantly elevated in the training group. After 12 wk, both groups observed no change in the ratios of antipyrine hydroxylates, para- and ortho-hydroxyantipyrine, to native antipyrine. Furthermore, no differences were observed within or between groups in the exercise-induced increase in the plasma level of thiobarbituric acid reactive species. In conclusion, 12-wk training had no effect on exercise-induced oxidative stress in elderly humans as measured by free radical reaction products of antipyrine. Despite the fact that training in elderly humans improves functional capacity, it appears not to compromise antioxidant defense mechanisms.  相似文献   

3.
4.
Seedlings of rice (Oryza sativa L.) cv. Pant-12 grown in sand cultures containing 200 and 400 μM NiSO4, showed a decrease in length and fresh weight of roots and shoots. Nickel was readily taken up by rice seedlings and the concentration was higher in roots than shoots. Nickel-treated seedlings showed increased rates of superoxide anion (O2 •− ) production, elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) demonstrating enhanced lipid peroxidation, and a decline in protein thiol levels indicative of increased protein oxidation compared to controls. With progressively higher Ni concentrations, non-protein thiol and ascorbate (AsA) increased, whereas the level of low-molecular-weight thiols (such as glutathione and hydroxyl-methyl glutathione), the ratio of these thiols to their corresponding disulphides, and the ratio of AsA to dehydroascorbic acid declined in the seedlings. Among the antioxidant enzymes studied, the activities of all isoforms of superoxide dismutase (Cu-Zn SOD, Mn SOD and Fe SOD), guaiacol peroxidases (GPX) and ascorbate peroxidase (APX) increased in Ni-treated seedlings, while no clear alteration in catalase activity was evident. Activity of the ascorbate-glutathione cycle enzymes monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR)—significantly increased in Ni-treated seedlings. However such increase was apparently insufficient to maintain the intracellular redox balance. Results suggest that Ni induces oxidative stress in rice plants, resulting in enhanced lipid peroxidation and decline in protein thiol levels, and that (hydroxyl-methyl) glutathione and AsA in conjunction with Cu-Zn SOD, GPX and APX are involved in stress response.  相似文献   

5.
Role of oxidative stress and antioxidant enzymes in Crohn's disease   总被引:1,自引:0,他引:1  
There is increasing interest in oxidative stress being a potential aetiological factor and/or a triggering factor in Crohn's disease, rather than a concomitant occurrence during the pathogenesis of the disease. Recent research has shown that the immune mononuclear cells of Crohn's disease patients are induced to produce hydrogen peroxide (H2O2). Similarly, the regulation of antioxidant enzymes during disease in these cells has been unravelled, showing that SOD (superoxide dismutase) activity and GPx (glutathione peroxidase) activity is increased during active disease and returns to normal in remission phases. However, catalase remains constantly inhibited which supports the idea that catalase is not a redox-sensitive enzyme, but a regulator of cellular processes. ROS (reactive oxygen species) can be produced under the stimulus of different cytokines such as TNFα (tumour necrosis factor α). It has been shown in different experimental models that they are also able to regulate apoptosis and other cellular processes. The status of oxidative stress elements in Crohn's disease and their possible implications in regulating cellular processes are reviewed in the present paper.  相似文献   

6.
Exercise,free radicals and oxidative stress   总被引:7,自引:0,他引:7  
This article reviews the role of free radicals in causing oxidative stress during exercise. High intensity exercise induces oxidative stress and although there is no evidence that this affects sporting performance in the short term, it may have longer term health consequences. The mechanisms of exercise-induced oxidative stress are not well understood. Mitochondria are sometimes considered to be the main source of free radicals, but in vitro studies suggest they may play a more minor role than was first thought. There is a growing acceptance of the importance of haem proteins in inducing oxidative stress. The release of metmyoglobin from damaged muscle is known to cause renal failure in exercise rhabdomyolysis. Furthermore, levels of methaemoglobin increase during high intensity exercise, while levels of antioxidants, such as reduced glutathione, decrease. We suggest that the free-radical-mediated damage caused by the interaction of metmyoglobin and methaemoglobin with peroxides may be an important source of oxidative stress during exercise.  相似文献   

7.
Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an indicator of oxidative stress, and mean break per cell (b/c) values, which is an indicator of decreased DNA repair efficiency, were found to be significantly increased in patients compared to normal controls (P?<?0.05) whereas ascorbic acid and GSH were found to be lower among patients than the control group. It has been found that elevated oxidative stress decreased antioxidant level and decreased DNA repair efficiency can contribute to the development of CAD. This study also showed that high MDA, low ascorbic acid and GSH were significantly associated with high b/c value.  相似文献   

8.
Effects of 12 wk exercise training on oxidative stress were examined in elderly humans. We measured oxidative stress during a 45 min cycling test by using antipyrine hydroxylation products. Antipyrine breakdown is independent of blood flow to the liver, which is important during exercise. Furthermore, antipyrine reacts quickly with hydroxyl radicals to form para- and ortho-hydroxyantipyrine. Ortho-hydroxyantipyrine is not formed in man through the mono-oxygenase pathway of cytochrome P450. Twenty subjects (9 women; 60 ± 3 y) participated in the training program. Thirteen subjects (5 women; 64 ± 7 y) served as inactive controls. Subjects trained, twice a week for 1h, at a fitness center. After 12 wk, maximal oxygen uptake (p < .005) and workload capacity (p < .001) were only significantly elevated in the training group. After 12 wk, both groups observed no change in the ratios of antipyrine hydroxylates, para- and ortho-hydroxy-antipyrine, to native antipyrine. Furthermore, no differences were observed within or between groups in the exercise-induced increase in the plasma level of thiobarbituric acid reactive species. In conclusion, 12-wk training had no effect on exercise-induced oxidative stress in elderly humans as measured by free radical reaction products of antipyrine. Despite the fact that training in elderly humans improves functional capacity, it appears not to compromise antioxidant defense mechanisms.  相似文献   

9.
Although early studies demonstrated that exogenous estrogen lowered a woman's risk of cardiovascular disease, recent trials indicate that HRT actually increases the risk of coronary heart disease or stroke. However, there is no clear explanation for this discrepancy. Is estrogen a helpful or a harmful hormone in terms of cardiovascular function? This review discusses some recent findings that propose a novel mechanism which may shed significant light upon this controversy. We propose that nitric oxide synthase (NOS) expressed within the vascular wall is a target of estrogen action. Under normal conditions in younger women, the primary product of estrogen action is NO, which produces a number of beneficial effects on vascular biology. As a woman ages, however, there is evidence for loss of important molecules essential for NO production (e.g., tetrahydrobiopterin, l-arginine). As these molecules are depleted, NOS becomes increasingly “uncoupled” from NO production, and instead produces superoxide, a dangerous reactive oxygen species. We propose that a similar uncoupling and reversal of estrogen response occurs in diabetes. Therefore, we propose that estrogen is neither “good” nor “bad”, but simply stimulates NOS activity. It is the biochemical environment around NOS that will determine whether estrogen produces a beneficial (NO) or deleterious (superoxide) product, and can account for this dual and opposite nature of estrogen pharmacology. Further, this molecular mechanism is consistent with recent analyses revealing that HRT produces salutary effects in younger women, but mainly increases the risk of cardiovascular dysfunction in older postmenopausal women.  相似文献   

10.
Drug-induced liver toxicity is a common cause of liver injury. This study was designed to elucidate whether high dose vancomycin (VCM) induces oxidative stress in liver and to investigate the protective effects of erdosteine, an expectorant agent. Twenty-two young Wistar rats were divided into three groups as follows: control group, VCM, and VCM plus erdosteine. VCM was administered intraperitoneally in the dosage of 200 mg/kg twice daily for 7 days. Erdosteine was administered orally administered once a day at a dose of 10 mg/kg body weight. The activities of antioxidant enzymes such as superoxide dismutase and catalase as well as the concentration of malondialdehyde, as an indicator of lipid peroxidation, were measured to evaluate oxidative stress in homogenates of the liver. VCM administration increased malondialdehyde levels (p < 0.001), superoxide dismutase (p < 0.01) and catalase (p < 0.001) activities. Erdosteine co-administration with VCM injections caused significantly decreased malondialdehyde levels (p < 0.001), superoxide dismutase (p < 0.01) and catalase (p < 0.001) activities in liver tissue when compared with VCM alone. It can be concluded that erdosteine may prevent VCM-induced oxidative changes in liver by reducing reactive oxygen species.  相似文献   

11.
The role of anthocyanins as an antioxidant under oxidative stress in rats   总被引:7,自引:0,他引:7  
Cyanidin 3-O-beta-D-glucoside (C3G) is included in anthocyanins, and expected to have a potency to scavenge active oxygen species in vivo. Rats were fed a diet containing C3G (2 g/kg diet) for 14 days, and then subjected to hepatic ischemia-reperfusion (I/R) as an oxidative stress model. I/R treatment elevated the liver thiobarbituric acid-reactive substance concentration and the serum activities of marker enzymes for liver injury, and lowered the liver reduced glutathione concentration. Feeding C3G significantly suppressed these changes caused by hepatic I/R. These results indicate that C3G functions as a potent antioxidant in vivo under oxidative stress. To clarify the mechanism of action of C3G, we investigated the absorption and metabolism of C3G in rats. C3G appeared in the plasma immediately after the oral administration of C3G. Protocatechuic acid, which seems to be produced by the degradation of cyanidin, was also present in the plasma. In the liver and kidneys, C3G was metabolized to methylated form.  相似文献   

12.
Fabry Disease, an X-linked inborn error of metabolism, is characterized by progressive renal insufficiency, with cardio and cerebrovascular involvement. Homocysteine (Hcy) is considered a risk factor for vascular diseases, but the mechanisms by which it produces cardiovascular damage are still poorly understood. Regarding the vascular involvement in FD patients, the analysis of factors related to thromboembolic events could be useful to improving our understanding of the disease. The aim of this study was to evaluate plasma Hcy and other parameters involved in the methionine cycle, as well as oxidative stress markers. The sample consisted of a group of 10 male FD patients and a control group of 8 healthy individuals, paired by age. Venous blood was collected for Hcy determination, molecular analysis, identification of thiobarbituric acid reactive substances, total glutathione and antioxidant enzymes activity, as well as vitamins quantification. Comparative analysis of FD patients versus the control group indicated hyperhomocysteinemia in 8 of the 10 FD patients, as well as a significant increase in overall glutathione levels and catalase activity. It is inferred that FD patients, apart from activation of the antioxidant system, present increased levels of plasma Hcy, although this is probably unrelated to common alterations in the methionine cycle.  相似文献   

13.
Oxidative stress plays a central role in the pathogenesis of Parkinson's disease (PD). L-DOPA, the gold standard in PD therapy, may paradoxically contribute to the progression of the disease because of its pro-oxidant properties. The issue, however, is controversial. In this study, we evaluated peripheral markers of oxidative stress in normal subjects, untreated PD patients and PD patients treated only with L-DOPA. We also measured platelet and plasma levels of L-DOPA, 3-O-methyldopa (the long-lasting metabolite of the drug), and dopamine. We found that isolated platelets of treated PD patients form higher amounts of 2,3-dihydroxybenzoate, an index of hydroxyl radical generation, than platelets of controls or untreated patients. In treated patients, platelet levels of 2,3-dihydroxybenzoate were positively correlated with platelet levels of L-DOPA, 3-O-methyldopa, and with the score of disease severity. Disease severity was correlated with platelet and plasma levels of L-DOPA, as well as with the daily intake of the drug. No significant differences in platelet levels of cytosolic and mitochondrial isoforms of the antioxidant enzyme superoxide dismutase were found between PD patients, either treated or untreated, and controls. Our findings lend further support to the hypothesis that L-DOPA might promote free radical formation in PD patients.  相似文献   

14.
Strawberries are an important fruit in the Mediterranean diet because of their high content of essential nutrients and beneficial phytochemicals, which seem to exert beneficial effects in human health. Healthy volunteers were supplemented daily with 500 g of strawberries for 1 month. Plasma lipid profile, circulating and cellular markers of antioxidant status, oxidative stress and platelet function were evaluated at baseline, after 30 days of strawberry consumption and 15 days after the end of the study. A high concentration of vitamin C and anthocyanins was found in the fruits. Strawberry consumption beneficially influenced the lipid profile by significantly reducing total cholesterol, low-density lipoprotein cholesterol and triglycerides levels (−8.78%, −13.72% and −20.80%, respectively; P<.05) compared with baseline period, while high-density lipoprotein cholesterol remained unchanged. Strawberry supplementation also significant decreased serum malondialdehyde, urinary 8-OHdG and isoprostanes levels (−31.40%, −29.67%, −27.90%, respectively; P<.05). All the parameters returned to baseline values after the washout period. A significant increase in plasma total antioxidant capacity measured by both ferric reducing ability of plasma and oxygen radical absorbance capacity assays and vitamin C levels (+24.97%, +41.18%, +41.36%, respectively; P<.05) was observed after strawberry consumption. Moreover, the spontaneous and oxidative hemolysis were significant reduced (−31.7% and −39.03%, respectively; P<.05), compared to the baseline point, which remained stable after the washout period. Finally, strawberry intake significant decrease (P<.05) the number of activated platelets, compared to both baseline and washout values. Strawberries consumption improves plasma lipids profile, biomarkers of antioxidant status, antihemolytic defenses and platelet function in healthy subjects, encouraging further evaluation on a population with higher cardiovascular disease risk.  相似文献   

15.
The role of oxidative stress in diabetic vascular and neural disease   总被引:12,自引:0,他引:12  
This review will focus on the impact of hyperglycemia-induced oxidative stress in the development of diabetes-induced vascular and neural dysfunction. Oxidative stress occurs when the balance between the production of oxidation products and the ability of antioxidant mechanisms to neutralize these products is tilted in the favor of the former. The production of reactive oxygen species has been shown to be increased in patients with diabetes. The possible sources for the overproduction of reactive oxygen species is widespread and include enzymatic pathways, autoxidation of glucose and the mitochondria. Increase in oxidative stress has clearly been shown to contribute to the pathology of vascular disease not only in diabetes but also in hypertension, stroke and ischemia. Since the etiology of diabetic neuropathy is considered to have a large vascular component, prevention of oxidative stress in diabetes is considered by many investigators to be a primary defense against the development of diabetic vascular disease. Potential therapies for preventing increased oxidative stress in diabetes and the neural vasculature will be discussed.  相似文献   

16.
T cells participate in combating infection and critically determine the outcomes in any given disease process. Impaired immune response occurs in a number disease processes such as in cancer and atherosclerosis although the underlying mechanisms are still not fully understood. This article gives an up-to-date review of T cells development and functional adaptation to pathophysiological stimuli and participation in the cardiovascular disease process. In addition, we have discussed the signaling pathways controlled by the microenvironment that determine T cells function and resultant type of immune response. We have also discussed in detail how oxidative stress is a key component of the micro environmental interaction.  相似文献   

17.
The study of reactive oxygen species (ROS) and oxidative stress remains a very active area of biological research, particularly in relation to cellular signaling and the role of ROS in disease. In the cerebral circulation, oxidative stress occurs in diverse forms of disease and with aging. Within the vessel wall, ROS produce complex structural and functional changes that have broad implications for regulation of cerebral perfusion and permeability of the blood-brain barrier. These oxidative-stress-induced changes are thought to contribute to the progression of cerebrovascular disease. Here, we highlight recent findings in relation to oxidative stress in the cerebral vasculature, with an emphasis on the emerging role for NADPH oxidases as a source of ROS and the role of ROS in models of disease.  相似文献   

18.
As evidence of the involvement of inflammation and oxidative damage in pathogenesis of age-related chronic diseases is growing, epidemiologists need to develop measures of both conditions to study their relationships in human populations. One way of searching for appropriate biomarkers is to examine correlations between different inflammatory markers and oxidative indices. We examined cross-sectional correlations between two inflammatory markers, serum C-reactive protein (CRP) and interleukin (IL)-6, and three oxidative indices, plasma levels of alpha-tocopherol and beta-carotene, and urinary levels of 2,3-dinor-5,6-dihydro-15-F2t-isoprostane (F2-IsoP), in 60 individuals at high risk of cardiovascular disease. Correlations between the biomarkers were examined graphically and using the Pearson correlation coefficient. No correlation was found between plasma levels of alpha-tocopherol and either of the inflammatory markers. Plasma beta-carotene inversely correlated with IL-6 (r = -0.46, p=0.0002) and CRP (r = -0.41, p = 0.001). Although urinary F2-IsoP did not correlate with IL-6, this biomarker positively correlated with CRP (r = 0.31, p = 0.002). As only urinary F2-IsoP levels have been validated against known oxidative assaults, their positive association with CRP levels is interpreted as evidence of an interconnection between low-level inflammation and oxidative status. Urinary levels of F2-IsoP and serum levels of CRP represent appropriate biomarkers for future studies of inflammation and oxidative status in humans.  相似文献   

19.
Functional polymorphisms in endogenous antioxidant defense genes including manganese superoxide dismutase (MnSOD), catalase (CAT), and glutathione peroxidase (GPX-1) have been linked with risk of cancer at multiple sites. Although it is presumed that these germline variants impact disease risk by altering the host’s ability to detoxify mutagenic reactive oxygen species, very few studies have directly examined this hypothesis. Concentrations of 8-isoprostane F2α (8-iso-PGF2α) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxoxdG)—sensitive indicators of lipid peroxidation and DNA oxidation, respectively—were measured in 24-h urine samples obtained from 93 healthy, premenopausal women participating in a dietary intervention trial. In addition, DNA was extracted from blood for genotyping of MnSOD Val16Ala, CAT-262 C > T, and GPX1 Pro198Leu genotypes by Taqman assay. Although geometric mean concentrations of 8-iso-PGF2α and 8-oxoxdG varied across several study characteristics including race, education level, body mass index, and serum antioxidant levels, there was little evidence that these biomarkers differed across any of the examined genotypes. In summary, functional polymorphisms in endogenous antioxidant defense genes do not appear to be strongly associated with systemic oxidative stress levels in young, healthy women.  相似文献   

20.
PURPOSE OF REVIEW: Myeloperoxidase, an abundant leukocyte protein that generates reactive oxidant species, is present and catalytically active within atherosclerotic lesions. Numerous lines of evidence suggest mechanistic links between myeloperoxidase, inflammation and both acute and chronic manifestations of cardiovascular disease. RECENT FINDINGS: Myeloperoxidase generates reactive oxidant species as part of its function in innate host defense mechanisms. The reactive species formed, however, may also damage normal tissues, contributing to inflammatory injury. Recent studies suggest that MPO-generated oxidants participate in multiple processes relevant to cardiovascular disease development and outcomes, including induction of foam cell formation, endothelial dysfunction, development of vulnerable plaque, and ventricular remodeling following acute myocardial infarction. Of note, measurements of myeloperoxidase mass and activity may be useful in cardiac risk stratification, both for chronic disease assessment, as well as in identification of patients at risk in the acute setting. SUMMARY: The inflammatory protein myeloperoxidase is present, active and mechanistically poised to participate in the initiation and progression of cardiovascular disease. The many links between myeloperoxidase, oxidation and cardiovascular disease suggest this leukocyte protein may have clinical utility in risk stratification for cardiovascular disease status and outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号