首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Abstract: Platelet-activating factor (PAF) may be a neuromodulator involved in neural cell differentiation, cerebral inflammation, and ischemia. The PAF receptor is a member of the G protein-coupled receptor superfamily. In the present study, we sought to define the specific G protein(s) that mediate PAF-stimulated phosphoinositide (PI) metabolism in an immortalized hippocampal cell line, HN33.11. PAF increased the production of 3H-labeled inositol phosphates (IPs) with EC50 values of 1.2–1.5 n M . The effect of PAF on 3H-IPs formation was completely blocked by the PAF antagonist BN 50739 at a concentration of 300 n M . Pertussis toxin pretreatment attenuated PAF-stimulated 3H-IPs production by 20–30% ( p < 0.05). Consistent with a role for Gi1/2 in this response, antiserum against Gαi1/2 blocked the response to a similar degree. Pretreatment of permeabilized cells with Gαq/11 antiserum attenuated the response by 70% ( p < 0.05), suggesting a role for Gq/11 in mediating the PAF response in this cell line. Stimulation with PAF increased [α-32P]-GTP binding to both Gαq and Gαi1/2 proteins. Moreover, specific [3H]PAF binding sites coprecipitated with Gαq and Gαi1/2 proteins. The results suggest that PAF-stimulated PI metabolism in HN33.11 cells is mediated by both Gq and Gi1/2 proteins.  相似文献   

3.
Abstract : Regulators of G protein signaling (RGS) proteins serve as potent GTPase-activating proteins for the heterotrimeric G proteins αi/o and αq/11. This study describes the immunohistochemical distribution of RGS7 throughout the adult rat brain and its cellular colocalization with Gαq/11, an important G protein-coupled receptor signal transducer for phospholipase Cβ-mediated activity. In general, both RGS7 and Gαq/11 displayed a heterogeneous and overlapping regional distribution. RGS7 immunoreactivity was observed in cortical layers I-VI, being most intense in the neuropil of layer I. In the hippocampal formation, RGS7 immunoreactivity was concentrated in the strata oriens, strata radiatum, mossy fibers, and polymorphic cells, with faint to nondetectable immunolabeling within the dentate gyrus granule cells and CA1-CA3 subfield pyramidal cells. Numerous diencephalic and brainstem nuclei also displayed dense RGS7 immunostaining. Dual immunofluorescence labeling studies with the two protein-specific antibodies indicated a cellular selectivity in the colocalization between RGS7 and Gαq/11 within many discrete brain regions, such as the superficial cortical layer I, hilus area of the hippocampal formation, and cerebellar Golgi cells. To assess the ability of Gαq/11-mediated signaling pathways to modulate dynamically RGS expression, primary cortical neuronal cultures were incubated with phorbol 12,13-dibutyrate, a selective protein kinase C activator. A time-dependent increase in levels of mRNA for RGS7, but not RGS4, was observed. Our results provide novel information on the region- and cell-specific pattern of distribution of RGS7 with the transmembrane signal transducer, Gαq/11. We also describe a possible RGS7-selective neuronal feedback adaptation on Gαq/11-mediated pathway function, which may play an important role in signaling specificity in the brain.  相似文献   

4.
5.
The regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling. RGS8 belongs to B/R4 subfamily of RGS proteins and is specifically expressed in Purkinje cells of adult cerebellum. Here, to examine the expression of RGS8 mRNA in developing cerebellum, we performed in situ hybridization. Apparent signals for expression of RGS8 mRNA were first detected on day 9 after birth, then RGS8 mRNA expression in Purkinje cells increased up to day 21, and its levels decreased to some extent in adult Purkinje cells. We also studied the expression of RGS7, which is expressed in Golgi cells in the granule cell layer of adult cerebellum. The expression of RGS7 mRNA was recognized in 7 day neonatal cerebellum. When examined with anti-RGS8 antibody, the RGS8 protein was already excluded from nucleus on day 9, and was distributed in cell body and dendrites in differentiating Purkinje cells of 14 day neonates.  相似文献   

6.
Toxoplasma gondii , an intracellular protozoan parasite, resides within a host-derived vacuole that is rapidly modified by a parasite-secreted membranous tubular network. In this study we investigated the involvement of heterotrimeric G proteins in the secretory pathway of T. gondii. Aluminum fluoride (AIFn), a specific activator of heterotrimeric G proteins, induced secretion from isolated tachyzoites of T. gondii in vitro, as seen by light optics and electron microscopy. In Western blot analyses, antibodies to G protein α subunits reacted with 39–42 kDa proteins from T. gondii isolates. Antibodies to G and G coupled to the fluorescent probe fluorescein isothiocyanate localized to the paranuclear region of T. gondii. Gi3α immunoprobes were confined to the cytoplasmic matrix of T. gondii and also labeled the parasitophorous vesicle. Fluorescein isothiocyanate-conjugated GA/1, an antipeptide antisera directed toward the GTP binding site common to G protein α subunits, was confined to the lateral cytoplasmic domain of the parasites where secretion is most prominent. In time-sequence studies using the GA/1 probe, the immunoreactive material shifted position daring invasion of target cell to areas of active secretion.  相似文献   

7.
Abstract: A μ-opioid receptor protein (μ-ORP) purified to homogeneity from bovine striatal membranes has been functionally reconstituted in liposomes with highly purified heterotrimeric guanine nucleotide regulatory proteins (G proteins). A mixture of bovine brain G proteins, predominantly GoA, was used for most of the experiments, but some experiments were performed with individual pure G proteins, GoA, GoB, Gi1, and Gi2. Low K m GTPase was stimulated up to 150% by μ-opioid receptor agonists when both μ-ORP and a G protein (either the brain G protein mixture or a single heterotrimeric G protein) were present in the liposomes. Stimulation by a selective μ-agonist was concentration dependent and was reversed by the antagonist (−)-naloxone, but not by its inactive enantiomer, (+)-naloxone. The μ selectivity of μ-ORP was demonstrated by the inability of δ and κ agonists to stimulate GTPase in this system. High-affinity μ-agonist binding was also restored by reconstitution with the brain G protein mixture and with each of the four pure Gi and Go proteins studied. The binding of μ agonists is sensitive to inhibition by GTPγS and by sodium.  相似文献   

8.
Studies of the desensitization of G protein-coupled signal transduction have led to the discovery of a family of guanosine triphosphatase-activating proteins (GAPs) for heterotrimeric G protein alpha subunits — the “regulator of G protein signaling” or RGS proteins. In considering both documented and potential functions of several RGS protein family members with demonstrable multidomain compositions (p115RhoGEF, PDZRhoGEF, Axin, Axil/Conductin, D-AKAP2, the G protein-coupled receptor kinases [GRKs], the DEP/GGL/RGS subfamily [RGS6, RGS7, RGS9, RGS11], and RGS12), this review explores the shift in our appreciation of the RGS proteins from unidimensional desensitizing agents to multifocal signal transduction regulators.  相似文献   

9.
Abstract: The ability of the tubulin dimer to interact with and to modulate the Gi function inhibiting adenylyl cyclase was examined in cerebral cortex membranes from 2-month-old and 24-month-old rats. The hydrolysis-resistant GTP analogue 5'-guanylylimidodiphosphate (GppNHp)-dependent inhibition of adenylyl cyclase was significantly decreased in cerebral cortex membranes from 24-month-old rats. Tubulin, prepared from rat brains by polymerization with GppNHp, caused inhibition of adenylyl cyclase (∼28%) in 2-month-old rats. Tubulin-GppNHp-dependent inhibition of adenylyl cyclase in 24-month-old rats was significantly attenuated (∼15%). In 2-month-old rats, when tubulin, polymerized with the hydrolysis-resistant photoaffinity GTP analogue [32P] P 3(4-azidoanilido)- P 1-5'-GTP ([32P]AAGTP), was incubated with cerebral cortex membranes, AAGTP was transferred from tubulin to G. Transfer of AAGTP from tubulin to G was reduced in 24-month-old rats. Furthermore, photoaffinity labeling of [32P]AAGTP to G in cortex membranes was significantly decreased in 24-month-old rats. No differences were observed in the amounts of G, G, or Gβ subunits and tubulin, estimated by immunoblotting, in cortex membranes from 2-month-old and 24-month-old rats. These results suggest that the ability of tubulin to interact with Gi and thereby modulate the inhibitory regulation of adenylyl cyclase is reduced in the cerebral cortex of 24-month-old rats.  相似文献   

10.
Regulators of G protein signaling (RGS) proteins that contain DEP (disheveled, EGL-10, pleckstrin) and GGL (G protein gamma subunit-like) domains form a subfamily that includes the mammalian RGS proteins RGS6, RGS7, RGS9, and RGS11. We describe the cloning of RGS6 cDNA, the specificity of interaction of RGS6 and RGS7 with G protein beta subunits, and certain biochemical properties of RGS6/beta5 and RGS7/beta5 complexes. After expression in Sf9 cells, complexes of both RGS6 and RGS7 with the Gbeta5 subunit (but not Gbetas 1-4) are found in the cytosol. When purified, these complexes are similar to RGS11/beta5 in that they act as GTPase-activating proteins specifically toward Galpha(o). Unlike conventional G(betagamma) complexes, RGS6/beta5 and RGS7/beta5 do not form heterotrimeric complexes with either Galpha(o)-GDP or Galpha(q)-GDP. Neither RGS6/beta5 nor RGS7/beta5 altered the activity of adenylyl cyclases types I, II, or V, nor were they able to activate either phospholipase C-beta1 or -beta2. However, the RGS/beta5 complexes inhibited beta(1)gamma(2)-mediated activation of phospholipase C-beta2. RGS/beta5 complexes may contribute to the selectivity of signal transduction initiated by receptors coupled to G(i) and G(o) by binding to phospholipase C and stimulating the GTPase activity of Galpha(o).  相似文献   

11.
The newly recognized regulators of G protein signaling (RGS) attenuate heterotrimeric G protein signaling pathways. We have cloned an IL-2-induced gene from human T cells, cytokine-responsive gene 1, which encodes a member of the RGS family, RGS16. The RGS16 protein binds Gialpha and Gqalpha proteins present in T cells, and inhibits Gi- and Gq-mediated signaling pathways. By comparison, the mitogen-induced RGS2 inhibits Gq but not Gi signaling. Moreover, the two RGS genes exhibit marked differences in expression patterns. The IL-2-induced expression of the RGS16 gene in T cells is suppressed by elevated cAMP, whereas the RGS2 gene shows a reciprocal pattern of regulation by these stimuli. Because the mitogen and cytokine receptors that trigger expression of RGS2 and RGS16 in T cells do not activate heterotrimeric G proteins, these RGS proteins and the G proteins that they regulate may play a heretofore unrecognized role in T cell functional responses to Ag and cytokine activation.  相似文献   

12.
Abstract: In the present study the effects of repeated administration of reserpine on striatal dopamine receptor and guanine nucleotide binding protein mRNAs were determined. Twenty-four hours after seven consecutive daily injections of reserpine—a treatment that is known to produce functional sensitization of D1 and D2 dopamine receptors—the level of striatal D1 dopamine receptor mRNA was unchanged. However, the level of mRNA for the G protein Gsα was increased by 127%. After extended reserpine treatment for 14 days, levels of both striatal D1 DA receptor and Gsα mRNAs were elevated by 99 and 78%, respectively. Seven days of reserpine treatment also increased levels of mRNA of the striatal D2 dopamine receptor and of G proteins Gi2α and Goα by 200, 79, and 32%, respectively. After 14 days of reserpine treatment the level of striatal D2 dopamine receptor mRNA was increased by twofold. In contrast, levels of the mRNAs coding for the G proteins Gi2α and Goα were unchanged. These data suggest that dopamine receptors and their respective G proteins play important roles in the development of sensitization of striatal dopamine receptors during repeated reserpine treatment. Furthermore, the persistent increase in level of striatal Gsα mRNA suggests that this G protein is necessary to maintain supersensitivity of the striatal D1 dopamine receptor system following long-term dopamine depletion.  相似文献   

13.
Abstract: We have demonstrated previously that D1 dopamine receptors are coupled to both Gsα and Goα. We examine here the coupling between human D5 dopamine receptors and G proteins in transfected rat pituitary GH4C1 cells. Similar to D1 receptors, cholera toxin treatment of cells reduced, but did not abolish, D5 agonist high-affinity binding sites, indicating D5 receptors couple to both Gsα and cholera toxin-insensitive G proteins. The interaction between D5 receptors and Gsα was confirmed by immunoprecipitation studies and by the ability of D5 receptors to stimulate adenylyl cyclase. Unlike D1 receptors, D5 receptors did not display any pertussis toxin-sensitive G-protein coupling to Goα or Giα. D5 receptors were also not coupled to Gqα and were unable to mediate phosphatidylinositol metabolism. Instead, D5 sites appeared to be coupled to an AIF4-sensitive, N -ethylmaleimide-resistant G protein. Anti-Gzα caused immunoprecipitation of 24.2 ± 5.2% of G protein-associated D5 receptors, indicating coupling between D5 and Gzα. The coupling to Gzα was specific for D5 receptors, because similar associations were not detected between D1 receptors and Gzα.  相似文献   

14.
Whither goest the RGS proteins?   总被引:3,自引:0,他引:3  
Studies of the desensitization of G protein-coupled signal transduction have led to the discovery of a family of guanosine triphosphatase-activating proteins (GAPs) for heterotrimeric G protein alpha subunits - the "regulator of G protein signaling" or RGS proteins. In considering both documented and potential functions of several RGS protein family members with demonstrable multidomain compositions (p115RhoGEF, PDZRhoGEF, Axin, Axil/Conductin, D-AKAP2, the G protein-coupled receptor kinases [GRKs], the DEP/GGL/RGS subfamily [RGS6, RGS7, RGS9, RGS11], and RGS12), this review explores the shift in our appreciation of the RGS proteins from unidimensional desensitizing agents to multifocal signal transduction regulators.  相似文献   

15.
G protein-coupled receptor signaling pathways mediate the transmission of signals from the extracellular environment to the generation of cellular responses, a process that is critically important for neurons and neurotransmitter action. The ability to promptly respond to rapidly changing stimulation requires timely inactivation of G proteins, a process controlled by a family of specialized proteins known as regulators of G protein signaling (RGS). The R7 group of RGS proteins (R7 RGS) has received special attention due to their pivotal roles in the regulation of a range of crucial neuronal processes such as vision, motor control, reward behavior, and nociception in mammals. Four proteins in this group, RGS6, RGS7, RGS9, and RGS11, share a common molecular organization of three modules: (i) the catalytic RGS domain, (ii) a GGL domain that recruits Gβ5, an outlying member of the G protein beta subunit family, and (iii) a DEP/DHEX domain that mediates interactions with the membrane anchor proteins R7BP and R9AP. As heterotrimeric complexes, R7 RGS proteins not only associate with and regulate a number of G protein signaling pathway components, but have also been found to form complexes with proteins that are not traditionally associated with G protein signaling. This review summarizes our current understanding of the biology of the R7 RGS complexes including their structure/functional organization, protein–protein interactions, and physiological roles.  相似文献   

16.
Abstract: We have isolated from an American lobster ( Homarus americanus ) olfactory organ cDNA library a clone, lobGαs, with >70% identity to mammalian and arthropod Gαs sequences. In genomic Southern blots, a fragment of lobGαs detected only one band, suggesting the lobsters have a single Gαs gene. In brain and olfactory organ, lobGαs mRNA was expressed predominantly in neurons, including many of the neuronal cell body clusters of the brain. Gαs protein was also expressed broadly, appearing on western blots as a band of 51.8 kDa in brain, eyestalk, pereiopod, dactyl, tail muscle, olfactory organ, and aesthetasc hairs. These results suggest that lobGαs plays a role in a wide variety of signal transduction events. Its presence in the olfactory aesthetasc hairs, which are almost pure preparations of the outer dendrites of the olfactory receptor neurons, and the expression of lobGαs mRNA in the olfactory receptor neurons of the olfactory organ indicate that lobGαs may mediate olfactory transduction. That virtually all ORNs express lobGαs mRNA equally predicts that hyperpolarizing odor responses mediated by cyclic AMP are a property of all lobster olfactory receptor neurons.  相似文献   

17.
Abstract: This study examined γ-aminobutyric acidA (GABAA) receptor function in cultured rat cerebellar granule cells by using microphysiometry following chronic flunitrazepam exposure, and correlated the findings with the α1 and β2/3 subunit protein expression and [3H]muscimol binding after the same treatment paradigm. Flunitrazepam treatment reduced ( p < 0.05) the maximal GABA-stimulated increase in extracellular acidification rate ( E max) (16.5 ± 1.2% and 11.3 ± 1.0%, 2-day control and treated cells, respectively; 17.4 ± 1.0% and 9.9 ± 0.7%, 7-day control and treated cells, respectively; best-fit E max± SEM, n = 7), without affecting the GABA concentration required to elicit 50% of maximal response (EC50) (1.2 ± 1.7 and 2.3 ± 1.8 µ M , 2-day control and treated cells, respectively; 1.7 ± 1.5 and 1.5 ± 1.5 µ M , 7-day control and treated cells, respectively; best-fit EC50± SEM, n = 7). Flunitrazepam exposure also abolished the flunitrazepam potentiation of the GABA response, caused a transient reduction of the GABAA receptor α1 and β2/3 subunit proteins over the initial 2 days, but did not alter [3H]muscimol binding compared with vehicle-treated cells. The results suggest that changes in GABAA receptor subunit protein expression, rather than loss of [3H]muscimol binding sites, underlie the chronic flunitrazepam-mediated desensitisation of GABAA receptor function.  相似文献   

18.
19.
Somatostatin acts at five G protein-coupled receptors, sst1-sst5. In mouse ischaemic retinas, the over-expression of sst2 (as in sst1 knock-out mice) results in the reduction of cell death and glutamate release. In this study, we reported that, in wild-type retinas, somatostatin, the multireceptor ligand pasireotide and the sst2 agonist octreotide decreased ischaemia-induced cell death and that octreotide also decreased glutamate release. In contrast, cell death was increased by blocking sst2 with cyanamide. In sst2 over-expressing ischaemic retinas, somatostatin analogues increased cell death, and octreotide also increased glutamate release. To explain this reversal of the anti-ischaemic effect of somatostatin agonists in the presence of sst2 over-expression, we tested sst2 desensitisation because of internalisation or altered receptor function. We observed that (i) sst2 was not internalised, (ii) among G protein-coupled receptor kinases (GRKs) and regulators of G protein signalling (RGSs), GRK1 and RGS1 expression increased following ischaemia, (iii) both GRK1 and RGS1 were down-regulated by octreotide in wild-type ischaemic retinas, (iv) octreotide down-regulated GRK1 but not RGS1 in sst2 over-expressing ischaemic retinas. These results demonstrate that sst2 activation protects against retinal ischaemia. However, in the presence of sst2 over-expression sst2 is functionally desensitised by agonists, possibly because of sustained RGS1 levels.  相似文献   

20.
Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号