首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
Platelet- and plasma-derived factor Va (FVa) serve essential cofactor roles in prothrombinase-catalyzed thrombin generation. Platelet-derived FV/Va, purified from Triton X-100 platelet lysates was composed of a mixture of polypeptides ranging from approximately 40 to 330 kDa, mimicking those visualized by Western blotting of platelet lysates and releasates with anti-FV antibodies. The purified, platelet-derived protein expressed significant cofactor activity such that thrombin activation led to only a 2-3-fold increase in cofactor activity yet expression of a specific activity identical to that of purified, plasma-derived FVa. Physical and functional differences between the two cofactors were identified. Purified, platelet-derived FVa was 2-3-fold more resistant to activated protein C-catalyzed inactivation than purified plasma-derived FVa on the thrombin-activated platelet surface. The heavy chain subunit of purified, platelet-derived FVa contained only a fraction ( approximately 10-15%) of the intrinsic phosphoserine present in the plasma-derived FVa heavy chain and was resistant to phosphorylation at Ser(692) catalyzed by either casein kinase II or thrombin-activated platelets. MALDI-TOF mass spectrometric analyses of tryptic digests of platelet-derived FV peptides detected an intact heavy chain uniquely modified on Thr(402) with an N-acetylglucosamine or N-acetylgalactosamine, whereas Ser(692) remained unmodified. N-terminal sequencing and MALDI-TOF analyses of platelet-derived FV/Va peptides identified the presence of a full-length heavy chain subunit, as well as a light chain subunit formed by cleavage at Tyr(1543) rather than Arg(1545) accounting for the intrinsic levels of cofactor activity exhibited by native platelet-derived FVa. These collective data are the first to demonstrate physical differences between the two FV cofactor pools and support the hypothesis that, subsequent to its endocytosis by megakaryocytes, FV is modified to yield a platelet-derived cofactor distinct from its plasma counterpart.  相似文献   

2.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

3.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

4.
5.
Glycosylphosphatidylinositol-specific phospholipase C (GPtdIns-PLC) is found in the protozoan parasite Trypanosoma brucei. A region of protein sequence similarity exists between the protozoan enzyme and eubacterial phosphatidylinositol-phospholipases C. The functional relevance of Cys80 and Gln81 of GPtdIns-PLC, both in this region, was tested with a panel of mutations at each position. Gln81Glu, Gln81Ala, Gln81Gly, Gln81Lys and Gln81Leu mutants were inactive. Cleavage of GPtdIns was detectable in Gln81Asn, although the specific activity decreased 500-fold, and kcat was reduced 50-fold. Thus an amide side-chain at residue 81 is essential for catalysis by GPtdIns-PLC. Sulfhydryl reagents inactivate GPtdIns-PLC, suggesting that a Cys could be close to the enzyme active site. Surprisingly, p-chloromercuriphenyl sulfonate (p-CMPS) is significantly more potent than N-ethylmaleimide, the less bulky compound. This knowledge prompted us to test whether replacement of Cys80 with an amino acid possessing a bulky side-chain would inactivate GPtdIns-PLC: Cys80Ala, Cys80Thr, Cys80Phe, Cys184Ala, and Cys269-270-273Ser were constructed for that purpose. Cys80Phe lacked enzyme activity, while Cys80Ala, Cys80Thr and Cys269-270-273Ser retained 33 to 100% of wild-type activity. Interestingly, the Cys80Ala and Cys80Thr mutants became resistant to p-CMPS, as predicted if the sulfhydryl reagent reacted with Cys80 in the wild-type enzyme to form a cysteinyl mercurylphenylsulfonate moiety, a bulky adduct that inactivated GPtdIns-PLC, similar to the Cys80Phe mutation. We conclude that a bulky side-chain (or adduct) at position 80 of GPtdIns-PLC abolishes enzyme activity. Together, these observations place Cys80 and Gln81 at, or close to, the active site of GPtdIns-PLC from T. brucei.  相似文献   

6.
Activated Factor V (FVa) functions as a membrane-bound cofactor to the enzyme Factor Xa (FXa) in the conversion of prothrombin to thrombin, increasing the catalytic efficiency of FXa by several orders of magnitude. To map regions on FVa that are important for binding of FXa, site-directed mutagenesis resulting in novel potential glycosylation sites on FV was used as strategy. The consensus sequence for N-linked glycosylation was introduced at sites, which according to a computer model of the A domains of FVa, were located at the surface of FV. In total, thirteen different regions on the FVa surface were probed, including sites that are homologous to FIXa-binding sites on FVIIIa. The interaction between the FVa variants and FXa and prothrombin were studied in a functional prothrombin activation assay, as well as in a direct binding assay between FVa and FXa. In both assays, the four mutants carrying a carbohydrate side chain at positions 467, 511, 652, or 1683 displayed attenuated FXa binding, whereas the prothrombin affinity was unaffected. The affinity toward FXa could be restored when the mutants were expressed in the presence of tunicamycin to inhibit glycosylation, indicating the lost FXa affinity to be caused by the added carbohydrates. The results suggested regions surrounding residues 467, 511, 652, and 1683 in FVa to be important for FXa binding. This indicates that the enzyme:cofactor assembly of the prothrombinase and the tenase complexes are homologous and provide a useful platform for further investigation of specific structural elements involved in the FVa.FXa complex assembly.  相似文献   

7.
T Watanabe  N Wada  J Y Chou 《Biochemistry》1992,31(12):3051-3058
Human germ cell alkaline phosphatase (GCAP), which shares 98% amino acid sequence identity with the placental AP (PLAP), is expressed by malignant trophoblasts. Protein sequence analysis suggests that the Ser residue at position 92 is the putative active site of GCAP which contains two recognition sequences (Asn122-Thr-Thr124 and Asn249-Arg-Thr251) for asparagine-linked glycosylation. To examine the roles of the Ser residue and glycan moieties on GCAP activity and processing, we altered the GCAP cDNA by site-directed mutagenesis and expressed the GCAP mutants in COS-1 cells. Substitution of Ser-92 with either a Thr (S92T) or an Ala (S92A) residue yielded a GCAP devoid of catalytic activity, suggesting that the Ser codon 92 is the active site of GCAP. Six GCAP mutants that lack one or both glycosylation sites were constructed by substituting either Asn-122 or Asn-249 with an Asp residue or either Thr-124 or Thr-251 with an Ala residue. The mature GCAP migrated as a 65-kDa product, but GCAP mutants lacking one or both glycosylation sites migrated as 62- or 58-kDa polypeptides, respectively, indicating that both sites were glycosylated. All six glycosylated mutants were active enzymatically and, in addition, were equally sensitive to heat, L-leucine, and EDTA inhibition as the parental enzyme. GCAP as well as its two active-site and six glycosylation mutants could be released from the plasma membrane of transfected COS-1 cells by the proteinase bromelain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Human lysozyme is a monomeric secretory protein composed of 130 amino acid residues, with four intramolecular disulfide bonds and no oligosaccharides. In this study, a mutant protein, [Ala128] lysozyme, which cannot fold because it lacks a disulfide bond, Cys6-Cys128, was expressed in mouse fibroblasts and was found to be mostly degraded in the cells, whereas the control wild-type lysozyme was quantitatively secreted into the media. The degradation of [Ala128]lysozyme was independent of the transport from the endoplasmic reticulum to the Golgi apparatus. The degradation was greatly inhibited by incubation of cells at 15 degrees C, but was minimally affected by treatment of cells with the lysosomotropic agent, chloroquine, implying a non-lysosomal process. Additional mutations (Gly48-->Ser or Met29-->Thr) were created to make asparagine-linked (N-linked) glycosylation site in the [Ala128]lysozyme, and the resultant double mutants, [Ser48, Ala128]lysozyme and [Thr29, Ala128]lysozyme, were analyzed with respect to their intracellular degradation. These mutant proteins were susceptible to N-linked glycosylation, and were degraded in a similar manner to that of [Ala128] lysozyme, except that the onset of degradation of [Ser48, Ala128]lysozyme and [Thr29, Ala128] lysozyme, but not of [Ala128]lysozyme, was preceded by a lag period of up to 60 min. Furthermore, the degradative double mutants, [Ser48, Ala128]lysozyme and [Thr29, Ala128]lysozyme, were glycosylated post-translationally as well as co-translationally. These observations suggest that there is some interaction between the mechanisms of glycosylation and degradation.  相似文献   

9.
Surveys of protein crystal structures have revealed that amino acids show unique structural preferences for the N1, N2, and N3 positions in the first turn of the alpha-helix. We have therefore extended helix-coil theory to include statistical weights for these locations. The helix content of a peptide in this model is a function of N-cap, C-cap, N1, N2, N3, C1, and helix interior (N4 to C2) preferences. The partition function for the system is calculated using a matrix incorporating the weights of the fourth residue in a hexamer of amino acids and is implemented using a FORTRAN program. We have applied the model to calculate the N1 preferences of Gln, Val, Ile, Ala, Met, Pro, Leu, Thr, Gly, Ser, and Asn, using our previous data on helix contents of peptides Ac-XAKAAAAKAAGY-CONH2. We find that Ala has the highest preference for the N1 position. Asn is the most unfavorable, destabilizing a helix at N1 by at least 1.4 kcal mol(-1) compared to Ala. The remaining amino acids all have similar preferences, 0.5 kcal mol(-1) less than Ala. Gln, Asn, and Ser, therefore, do not stabilize the helix when at N1.  相似文献   

10.
We previously reported that the beta-1,4-endoglucanase (EGase) belonging to glycoside hydrolase family (GHF) 45 of the mulberry longicorn beetle, Apriona germari (Ag-EGase II), has three potential N-linked glycosylation sites; these sites are located at amino acid residues 56-59 (NKSG), 99-102 (NSTF), and 237-239 (NYSstop). In the present study, we analyze the functional role of these potential N-linked glycosylation sites. Tunicamycin treatment completely abolished the enzymatic activity of Ag-EGase II. To further elucidate the functional role of the N-linked glycosylation sites in Ag-EGase II, we have assayed the cellulase enzyme activity in Ser58Gln, Thr101Gln, or Ser239Gln mutants. Lack of N-linked glycosylation site at residues 99-102 (NSTF), the site of which is conserved in known beetle GHF 45 cellulases, showed loss of enzyme activity and reduced the molecular mass of the enzyme. In contrast, mutations in Ser58Gln or Ser239Gln affected neither the activity nor the apparent molecular mass of the enzyme, indicating that these sites did not lead to N-linked glycosylation. The present study demonstrates that N-linked glycosylation at residues 99-102 (NSTF), while not essential for secretion, is required for Ag-EGase II enzyme activity.  相似文献   

11.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

12.
The amino acid sequence of a protease inhibitor isolated from the hemolymph of Sarcophaga bullata larvae was determined by tandem mass spectrometry. Homology considerations with respect to other protease inhibitors with known primary structures assisted in the choice of the procedure followed in the sequence determination and in the alignment of the various peptides obtained from specific chemical cleavage at cysteines and enzyme digests of the S. bullata protease inhibitor. The resulting sequence of 57 residues is as follows: Val Asp Lys Ser Ala Cys Leu Gln Pro Lys Glu Val Gly Pro Cys Arg Lys Ser Asp Phe Val Phe Phe Tyr Asn Ala Asp Thr Lys Ala Cys Glu Glu Phe Leu Tyr Gly Gly Cys Arg Gly Asn Asp Asn Arg Phe Asn Thr Lys Glu Glu Cys Glu Lys Leu Cys Leu.  相似文献   

13.
Pulmonary arterial hypertension (PAH) is a devastating disease characterized by abnormal remodeling of small, peripheral pulmonary arteries. Germline mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene are a major risk factor for developing PAH. At present, the correlation between the BMPR2 mutation and the patient''s prognosis remains controversial despite several investigations. In this study, we explored the functional effects of four BMPR2 mutations to dissect the functional significance of the BMPR2 gene defect. Cellular immunofluorescence assay of four mutants (Tyr67Cys, Thr268fs, Ser863Asn, and Gln433X) revealed that the BMPR2 protein containing Thr268fs, Ser863Asn, or Gln433X exhibited abnormal subcellular localization. The BrdU incorporation and TUNEL assay suggested that any of the BMPR2 mutations Thr268fs, Ser863Asn, or Gln433X could improve endothelial cell apoptosis and decrease cell proliferation. All of the four mutants could inhibit nitric oxide (NO) synthesis in HLMVE cells, and ET-1 levels increased in the cells transfected with mutant Ser863Asn. Our results will improve the understanding of the genotype-phenotype correlations and mechanisms associated with BMPR2 mutations.  相似文献   

14.
Two distinct spontaneous variants of the murine anti-digoxin hybridoma 26-10 were isolated by fluorescence-activated cell sorting for reduced affinity of surface antibody for antigen. Nucleotide and partial amino acid sequencing of the variant antibody variable regions revealed that 1 variant had a single amino acid substitution: Lys for Asn at heavy chain position 35. The second variant antibody had 2 heavy chain substitutions: Tyr for Asn at position 35, and Met for Arg at position 38. Mutagenesis experiments confirmed that the position 35 substitutions were solely responsible for the markedly reduced affinity of both variant antibodies. Several mutants with more conservative position 35 substitutions were engineered to ascertain the contribution of Asn 35 to the binding of digoxin to antibody 26-10. Replacement of Asn with Gln reduced affinity for digoxin 10-fold relative to the wild-type antibody, but maintained wild-type fine specificity for cardiac glycoside analogues. All other substitutions (Val, Thr, Leu, Ala, and Asp) reduced affinity by at least 90-fold and caused distinct shifts in fine specificity. The Ala mutant demonstrated greatly increased relative affinities for 16-acetylated haptens and haptens with a saturated lactone. The X-ray crystal structure of the 26-10 Fab in complex with digoxin (Jeffrey PD et al., 1993, Proc Natl Acad Sci USA 90:10310-10314) reveals that the position 35 Asn contacts hapten and forms hydrogen bonds with 2 other contact residues. The reductions in affinity of the position 35 mutants for digoxin are greater than expected based upon the small hapten contact area provided by the wild-type Asn. We therefore performed molecular modeling experiments which suggested that substitution of Gln or Asp can maintain these hydrogen bonds whereas the other substituted side chains cannot. The altered binding of the Asp mutant may be due to the introduction of a negative charge. The similarities in binding of the wild-type and Gln-mutant antibodies, however, suggest that these hydrogen bonds are important for maintaining the architecture of the binding site and therefore the affinity and specificity of this antibody. The Ala mutant eliminates the wild-type hydrogen bonding, and molecular modeling suggests that the reduced side-chain volume also provides space that can accommodate a congener with a 16-acetyl group or saturated lactone, accounting for the altered fine specificity of this antibody.  相似文献   

15.
NH2-terminal sequence analysis was performed on subregions of human plasma fibronectin including 24,000-dalton (24K) DNA-binding, 29,000-dalton (29K) gelatin-binding, and 18,000-dalton (18K) heparin-binding tryptic fragments. These fragments were obtained from fibronectin after extensive trypsin digestion followed by sequential affinity purification on gelatin-Sepharose, heparin-agarose, and DNA-cellulose columns. The gelatin-binding fragment was further purified by gel filtration on Sephadex G-100, and the DNA-binding and heparin-binding fragments were further purified by high-performance liquid chromatography. The 29K fragment had the following NH2-terminal sequence: AlaAlaValTyrGlnProGlnProHisProGlnProPro (Pro)TyrGlyHis HisValThrAsp(His)(Thr)ValValTyrGly(Ser) ?(Ser)?-Lys. The NH2-terminal sequence of a 50K, gelatin-binding, subtilisin fragment by L. I. Gold, A. Garcia-Pardo, B. Prangione, E. C. Franklin, and E. Pearlstein (1979, Proc. Nat. Acad. Sci. USA76, 4803–4807) is identical to positions 3–19 (with the exception of some ambiguity at position 14) of the 29K fragment. These data strongly suggest that the 29K tryptic fragment is included in the 50K subtilisin fragment, and that subtilisin cleaves fibronectin between the Ala2Val3 residues of the 29K tryptic fragment. The 18K heparin-binding fragment had the following NH2-terminal sequence: (Glu)AlaProGlnProHisCysIleSerLysTyrIle LeuTyrTrpAspProLysAsnSerValGly?(Pro) LysGluAla?(Val)(Pro). The 29K gelatin-binding and 18K heparin-binding fragments have proline-rich NH2-terminal sequences suggesting that they may have arisen from protease-sensitive, random coil regions of fibronectin corresponding to interdomain regions preceding macromolecular-binding domains. Both of these fragments contain the identical sequence ProGlnProHis, a sequence which may be repeated in other interdomain regions of fibronectin. The 24K DNA-binding fragment has the following NH2-terminal sequence: SerAspThrValProSerProCysAspLeuGlnPhe ValGluValThrAspVal LysValThrIleMetTrpThrProProGluSerAla ValThrGlyTyrArgVal AspValCysProValAsnLeuProGlyGluHisGly Gln(Cys)LeuProIleSer. The sequence of positions 9–22 are homologous to positions 15–28 of the α chain of DNA-dependent RNA polymerase from Escherichia coli. The homology observed suggests that this stretch of amino acids may be a DNA-binding site.  相似文献   

16.
To investigate the functional role of an invariant histidine residue in Trigonopsis variabilis D-amino acid oxidase (DAAO), a set of mutant enzymes with replacement of the histidine residue at position 324 was constructed and their enzymatic properties were examined. Wild-type and mutant enzymes have been purified to homogeneity using the His-bound column and the molecular masses were determined to be 39.2 kDa. Western blot analysis revealed that the in vivo synthesized mutant enzymes are immuno-identical with that of the wild-type DAAO. The His324Asn and His324Gln mutants displayed comparable enzymatic activity to that of the wild-type enzyme, while the other mutant DAAOs showed markedly decreased or no detectable activity. The mutants, His324/Asn/Gln/Ala/Tyr/Glu, exhibited 38-181% increase in Km and a 2-10-fold reduction in kcat/Km. Based on the crystal structure of a homologous protein, pig kidney DAAO, it is suggested that His324 might play a structural role for proper catalytic function of T. variabilis DAAO.  相似文献   

17.
It has been shown previously that chicken ovalbumin synthesized and secreted in a heterologous cell system is glycosylated at the correct site and that the oligosaccharides at that site, similar to the protein made in hen oviduct, are predominantly of the hybrid type (Sheares, B. T., and Robbins, P. W. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1993-1997). This site-specific glycosylation of Asn293, but not Asn312, suggested a prominent role for the nascent protein chain rather than the specific cell type in directing the proper attachment of oligosaccharide chains. In the present study, the effect of glycosylation at Asn293 on the glycosylation of Asn312 has been investigated. Using a 20-base oligodeoxynucleotide primer containing a 2-base mismatch, the codon for Asn293 in the chicken ovalbumin gene (AAC) was changed to that for Gln (CAA), thereby preventing glycosylation at amino acid 293. Constructions containing this mutation were transfected into mouse L (tk-) cells which were subsequently labeled with [35S]methionine. Ovalbumin secreted by these cells was recovered by immunoaffinity chromatography and analyzed for the presence of an oligosaccharide attached at Asn312. Treatment of the material with peptide:N-glycosidase F demonstrated that ovalbumin molecules containing Gln substituted for Asn293 were not glycosylated. This further supports our earlier hypothesis that the nascent protein chain is responsible for directing site-specific glycosylation of ovalbumin, and that the presence of an oligosaccharide chain at the first site has no influence on glycosylation at the second site.  相似文献   

18.
Enzymatic properties of barley alpha-amylase 1 (AMY1) are altered as a result of amino acid substitutions at subsites -5/-6 (Cys95-->Ala/Thr) and +1/+2 (Met298-->Ala/Asn/Ser) as well as in the double mutants, Cys95-->Ala/Met298-->Ala/Asn/Ser. Cys95-->Ala shows 176% activity towards insoluble Blue Starch compared to wild-type AMY1, kcat of 142 and 211% towards amylose DP17 and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside (Cl-PNPG7), respectively, but fivefold to 20-fold higher Km. The Cys95-->Thr-AMY1 AMY2 isozyme mimic exhibits the intermediary behaviour of Cys95-->Ala and wild-type. Met298-->Ala/Asn/Ser have slightly higher to slightly lower activity for starch and amylose, whereas kcat and kcat/Km for Cl-PNPG7 are < or = 30% and < or = 10% of wild-type, respectively. The activity of Cys95-->Ala/Met298-->Ala/Asn/Ser is 100-180% towards starch, and the kcat/Km is 15-30%, and 0.4-1.1% towards amylose and Cl-PNPG7, respectively, emphasizing the strong impact of the Cys95-->Ala mutation on activity. The mutants therefore prefer the longer substrates and the specificity ratios of starch/Cl-PNPG7 and amylose/Cl-PNPG7 are 2.8- to 270-fold and 1.2- to 60-fold larger, respectively, than of wild-type. Bond cleavage analyses show that Cys95 and Met298 mutations weaken malto-oligosaccharide binding near subsites -5 and +2, respectively. In the crystal structure Met298 CE and SD (i.e., the side chain methyl group and sulfur atom) are near C(6) and O(6) of the rings of the inhibitor acarbose at subsites +1 and +2, respectively, and Met298 mutants prefer amylose for glycogen, which is hydrolysed with a slightly lower activity than by wild-type. Met298 AMY1 mutants and wild-type release glucose from the nonreducing end of the main-chain of 6"'-maltotriosyl-maltohexaose thus covering subsites -1 to +5, while productive binding of unbranched substrate involves subsites -3 to +3.  相似文献   

19.
The scaffold of serine protease inhibitors plays a significant role in the process of religation which resists proteolysis of the inhibitor in comparison to a substrate. Although the role of the conserved scaffolding Asn residue was previously implicated in the maintenance of the binding loop conformation of Kunitz (STI) inhibitors, its possible involvement in the prevention of proteolysis is still unexplored. In this paper, we have investigated the specific role of the spacer Asn in the prevention of proteolysis through structural and biochemical studies on the mutants where Asn14 of winged bean chymotrypsin inhibitor (WCI) has been replaced by Gly, Ala, Thr, Leu, and Gln. A residue having no side chain or beta-branching at the 14th position creates deformation and insufficient protrusion of the binding loop, and as a result N14G and N14T lose the ability to recognize proteases. Although the reactive site loop conformation of N14A and N14Q are almost identical to WCI, biochemical results present N14A as a substrate indicating that the methyl group of Ala14 is not suitable to capture the cleaved parts together for religation. The poor inhibitory power of N14L points toward the chemical incompatibility of Leu at the 14th position, although its size is the same as Asn; on the other hand, slight loss of inhibitory potency of N14Q is attributed to the inappropriate placement of the Gln14 polar head, caused by the strained accommodation of its bigger side chain. These observations collectively allow us to conclude that the side chain of spacer Asn fits snugly into the concave space of the reactive site loop cavity and its ND2 atom forms hydrogen bonds with the P2 and P1' carbonyl O at either side of the scissile bond holding the cleaved products together for religation. Through database analysis, we have identified such spacer asparagines in five other families of serine protease inhibitors with a similar disposition of their ND2 atoms, which supports our proposition.  相似文献   

20.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号