首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influenza viral mRNA, i.e., complementary RNA (cRNA), isolated from infected cells , was resolved into six different species by electrophoresis in 2.1% acrylamide gels containing 6 M urea. The cRNA''s were grouped into three size classes: L (large), M (medium-size), and S (small). Similarly, when gels were sliced for analysis, the virion RNA (vRNA) also distributed into six peaks because the three largest vRNA segments were closely spaced and were resolved only when the gels were autoradiographed or stained. Because of their attached polyadenylic acid [poly(A)]sequences, the cRNA segments migrated more slowly than did the corresponding vRNA segments during gel electrophoresis. After removal of the poly(A) by RNase H, the cRNA and vRNA segments comigrated, indicating that they were approximately the same size. One of the cRNA segments, S2, was shown by annealing to contain the genetic information in the vRNA segment with which it comigrated, strongly suggesting that each cRNA segment was transcribed from the vRNA segment of the same size. In contrast to the vRNA segments, which when isolated from virions were present in approximately 1:1 molar ratios, the segments of the isolated cRNA were present in unequal amounts, with the segments M2 and S2 predominating, suggesting that different amounts of the cRNA segments were synthesized in the infected cell. The predominant cRNA segments, M2 and S2, and also the S1 segment, were active as mRNA''s in wheat germ extracts. The M2 cRNA was the mRNA for the nucleocapsid protein; S1 for the membrane protein; and S2 for the nonstructural protein NS1.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Influenza virus endonuclease activity was studied in vitro with model virion RNA (vRNA) and cRNA molecules. We show that endonuclease activity can be partially rescued by transplanting vRNA-like promoter features into the model cRNA promoter. This study defines three distinctive features within the vRNA promoter--absent in the cRNA promoter--that are required for endonuclease cleavage.  相似文献   

10.
11.
Some influenza virus complementary RNA (cRNA) from infected chick cells is polyadenylated as judged by oligo(dT)-cellulose chromatography. However, none of the virion RNA or the vRNA synthesised in infected cells contain poly(A) sequences. cRNA containing poly(A) sequences was further characterised by polyacrylamide gel electrophoresis and under the conditions used only some size classes of cRNA were polyadenylated.  相似文献   

12.
13.
Influenza virus-specific RNA has been synthesized in vitro, using cytoplasmic or microsomal fractions of influenza virus-infected MDCK cells. The RNA polymerase activity was stimulated 5-30 times by priming with ApG. About 20-30% of the product was polyadenylated. Most of the in vitro product was of positive polarity, as shown by hybridization to strand specific probes and by T1 fingerprinting of the poly(A)+ and poly(A)- RNA segments encoding haemagglutinin and nucleoprotein. The size of poly(A)- RNA segments, determined on sequencing gels, was indistinguishable from that of virion RNA, whereas poly(A)+ RNA segments contain poly(A) tails approximately 50 nucleotides long. The size of in vitro synthesized RNA segments was also determined by gel electrophoresis of S1-treated double-stranded RNAs, obtained by hybridization of poly(A)+ or poly(A)- RNA fractions with excess of unlabelled virion RNA. The results of these experiments indicate that poly(A)- RNA contains full-length complementary RNA. This conclusion is further substantiated by the presence of additional oligonucleotides in the T1 fingerprints of in vitro synthesized poly(A)- haemagglutinin or nucleoprotein RNA, selected by hybridization to cloned DNA probes corresponding to the 3' termini of the genes.  相似文献   

14.
15.
16.
Polyadenylic acid in the genomic RNA of mengovirus.   总被引:1,自引:1,他引:0       下载免费PDF全文
The polyadenylic acid contained in 35S mengovirus RNA produced in infected BHK-21 cells contained approximately 94% AMP and was estimated to contain an average of 50 to 55 nucleotides. The polyadenylic acid is placed at the 3'-end of the genomic RNA based on the presence of significant levels of [3H]adenosine in complete alkali or RNase T2 digests of polyadenylic acid from [3H]adenosine-labeled 35S viral RNA.  相似文献   

17.
Replication of the influenza A virus virion RNA (vRNA) requires the synthesis of full-length cRNA, which in turn is used as a template for the synthesis of more vRNA. A "corkscrew" secondary-structure model of the cRNA promoter has been proposed recently. However the data in support of that model were indirect, since they were derived from measurement, by use of a chloramphenicol acetyltransferase (CAT) reporter in 293T cells, of mRNA levels from a modified cRNA promoter rather than the authentic cRNA promoter found in influenza A viruses. Here we measured steady-state cRNA and vRNA levels from a CAT reporter in 293T cells, directly measuring the replication of the authentic influenza A virus wild-type cRNA promoter. We found that (i) base pairing between the 5' and 3' ends and (ii) base pairing in the stems of both the 5' and 3' hairpin loops of the cRNA promoter were required for in vivo replication. Moreover, nucleotides in the tetraloop at positions 4, 5, and 7 and nucleotides forming the 2-9 base pair of the 3' hairpin loop were crucial for promoter activity in vivo. However, the 3' hairpin loop was not required for polymerase binding in vitro. Overall, our results suggest that the corkscrew secondary-structure model is required for authentic cRNA promoter activity in vivo, although the precise role of the 3' hairpin loop remains unknown.  相似文献   

18.
C D Rao  A Kiuchi    P Roy 《Journal of virology》1983,46(2):378-383
The 3'-terminal sequences of the 10 double-stranded RNA genome segments of bluetongue virus (serotypes 10 and 11) were determined. The double-stranded RNAs were 3' labeled with [5'-32P]pCp and resolved into 10 segments by electrophoresis. After denaturation, the two complementary strands of segments 4 through 10 were resolved into fast- and slow-migrating species by polyacrylamide gel electrophoresis, and their 3' end sequences were determined. Complete RNase T1 digestion of the individual 3'-labeled double-stranded RNA segments yielded two labeled oligonucleotides, one of which migrated faster than the other on 20% polyacrylamide-7 M urea gels. Sequence analyses of the two oligonucleotides of segments 4 through 10 confirmed the corresponding RNA sequence data. For RNA segments 1 through 3 the oligonucleotide analyses gave comparable results. The 3'-terminal sequences of the fast-migrating RNA species were HOCAAUUU. . . ; those of the slow-migrating RNA species were HOCAUUCACA. . . . Similar results were obtained for double-stranded RNA from bluetongue virus serotypes 10 and 11. Beyond the common termini, the sequences for each segment varied considerably.  相似文献   

19.
A soluble RNA-dependent RNA polymerase was isolated from poliovirus-infected HeLa cells and was shown to copy poliovirus RNA in vitro. The enzyme was purified from a 200,000-X-g supernatant of a cytoplasmic extract of infected cells. The activity of the enzyme was measured throughout the purification by using a polyadenylic acid template and oligouridylic acid primer. The enzyme was partially purified by ammonium sulfate precipitation, glycerol gradient centrifugation, and phosphocellulose chromatography. The polymerase precipitated in a 35% saturated solution of ammonium sulfate, sedimented at about 7S on a glycerol gradient, and eluted from phosphocellulose with 0.15 M KC1. The polymerase was purified about 40-fold and was shown to be totally dependent on exogenous RNA for activity and relatively free of contaminating nuclease. The partially purified polymerase was able to use purified polio virion RNA as well as a template. Under the reaction conditions used, the polymerase required an oligouridylic acid primer and all four ribonucleside triphosphates for activity. The optimum ratio of oligouridylic acid molecules to poliovirus RNA molecules for priming activity was about 16:1. A nearest-neighbor analysis of the in vitro RNA product shows it to be heteropolymeric. Annealing the in vitro product with poliovirus RNA product shows it to be heteropolymeric. Annealing the in vitro product with poliovirus RNA rendered it resistant to RNase digestion, thus suggesting that the product RNA was complementary to the virion RNA template.  相似文献   

20.
The genome of influenza A viruses comprises eight negative-strand RNA segments. Although all eight segments must be present in cells for efficient viral replication, the mechanism(s) by which these viral RNA (vRNA) segments are incorporated into virions is not fully understood. We recently found that sequences at both ends of the coding regions of the HA, NA, and NS vRNA segments of A/WSN/33 play important roles in the incorporation of these vRNAs into virions. In order to similarly identify the regions of the PB2, PB1, and PA vRNAs of this strain that are critical for their incorporation, we generated a series of mutant vRNAs that possessed the green fluorescent protein gene flanked by portions of the coding and noncoding regions of the respective segments. For all three polymerase segments, deletions at the ends of their coding regions decreased their virion incorporation efficiencies. More importantly, these regions not only affected the incorporation of the segment in which they reside, but were also important for the incorporation of other segments. This effect was most prominent with the PB2 vRNA. These findings suggest a hierarchy among vRNA segments for virion incorporation and may imply intersegment association of vRNAs during virus assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号