首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial pneumonia causing a loss of respiratory surface area due to a proliferative fibrotic response involving hyperplastic, hypertrophic, and metaplastic epithelium, cystic honeycomb change, septal expansion, and variable inflammation. Wnt (wingless) signaling glycoproteins are known to be involved in lung development and tissue repair, and are up-regulated in patients with IPF. Based on previous qRT-PCR data showing increased Wnt7B in lungs of IPF patients, a systematic, quantitative examination of its tissue site distribution was undertaken.

Methods

Tissue samples from the Lung Tissue Research Consortium (LTRC) of 39 patients diagnosed with mild to severe IPF/usual interstitial pneumonia (UIP) and 19 normal patients were examined for the immunolocalization of Wnt7B.

Results

In normal lung, moderate Wnt7B reactivity was confined to airway epithelium, smooth muscle of airways and vasculature, and macrophages. IPF lung showed strong Wnt7B reactivity in fibroblastic foci, dysplastic airway and alveolar epithelium, and in highly discrete subepithelial, basement membrane-associated regions. All reactive sites were sized and counted relative to specific microscopic regions. Those in the subepithelial sites were found in significantly greater numbers and larger relative area compared with the others. No reactive sites were present in normal patient controls.

Conclusions

The results demonstrate Wnt7B to be expressed at high concentrations in regions of active hyperplasia, metaplasia, and fibrotic change in IPF patients. In this context and its previously established biologic activities, Wnt7B would be expected to be of potential importance in the pathogenesis of IPF.  相似文献   

2.

Background

Idiopathic pulmonary fibrosis (IPF) is an adult-onset Idiopathic Interstitial Pneumonia (IIP) usually diagnosed between age 50 to 70 years. Individuals with Familial Pulmonary Fibrosis (FPF) have at least one affected first or second-degree relative and account for 0.5-20% of cases.

Methods

We ascertained and collected DNA samples from a large population-based cohort of IPF patients from Newfoundland, Canada. For each proband, a family history was documented and medical records were reviewed. Each proband was classified as familial (28 patients) or sporadic (50 patients) and all 78 probands were screened for variants in four highly penetrant, adult-onset PF genes (SFTPC, SFTPA2, TERT,TERC).

Results

Seventy-eight IPF probands were enrolled of whom 28 (35.9%) had a positive family history. These 28 familial patients led to the recruitment of an additional 49 affected relatives (total of 77 FPF patients). By age 60 years, 42% of the familial cohort had been diagnosed with PF compared with only 16% of the sporadic patient collection (χ2 = 8.77, p = 0.003). Mean age of diagnosis in the familial group was significantly younger than the sporadic group (61.4 years vs. 66.6 yrs, p = 0.012) with a wider age range of diagnosis (19–92 years compared with 47–82 years). Thirty-three of 77 (42.8%) FPF patients had a tissue diagnosis and all but five had usual interstitial pneumonia histology. Compared with other published case series, the familial IIP histologies were more homogeneous. Three of 28 familial probands (10.7%) and none of the 50 sporadic probands had pathogenic variants in the four genes tested. All three familial probands had mutations in TERT. Other phenotypes associated with telomerase deficiency were present in these families including cirrhosis, bone marrow hypoplasia and premature graying. Telomere length assays were performed on mutation carriers from two families and confirmed telomere-related deficiency.

Conclusion

The proportion of familial cases in our cohort is higher than any previously reported estimate and we suggest that this is due to the fact that Newfoundland cohort is ethnically homogeneous and drawn from a founder population. In our patient collection, diagnosis with IPF prior to age 45 years predicted familial disease. In two of the three TERT mutation families, the pedigree appearance is consistent with genetic anticipation. In the other 25 FPF families negative for mutations in known PF genes, we did not identify other telomerase associated medical problems (bone marrow dysfunction, cirrhosis) and we hypothesize that there are novel PF genes segregating in our population.  相似文献   

3.
AS Patel  L Lin  A Geyer  JA Haspel  CH An  J Cao  IO Rosas  D Morse 《PloS one》2012,7(7):e41394

Background

Autophagy is a basic cellular homeostatic process important to cell fate decisions under conditions of stress. Dysregulation of autophagy impacts numerous human diseases including cancer and chronic obstructive lung disease. This study investigates the role of autophagy in idiopathic pulmonary fibrosis.

Methods

Human lung tissues from patients with IPF were analyzed for autophagy markers and modulating proteins using western blotting, confocal microscopy and transmission electron microscopy. To study the effects of TGF-β1 on autophagy, human lung fibroblasts were monitored by fluorescence microscopy and western blotting. In vivo experiments were done using the bleomycin-induced fibrosis mouse model.

Results

Lung tissues from IPF patients demonstrate evidence of decreased autophagic activity as assessed by LC3, p62 protein expression and immunofluorescence, and numbers of autophagosomes. TGF-β1 inhibits autophagy in fibroblasts in vitro at least in part via activation of mTORC1; expression of TIGAR is also increased in response to TGF-β1. In the bleomycin model of pulmonary fibrosis, rapamycin treatment is antifibrotic, and rapamycin also decreases expression of á-smooth muscle actin and fibronectin by fibroblasts in vitro. Inhibition of key regulators of autophagy, LC3 and beclin-1, leads to the opposite effect on fibroblast expression of á-smooth muscle actin and fibronectin.

Conclusion

Autophagy is not induced in pulmonary fibrosis despite activation of pathways known to promote autophagy. Impairment of autophagy by TGF-β1 may represent a mechanism for the promotion of fibrogenesis in IPF.  相似文献   

4.
5.
6.
7.
Autophagy is the main cellular pathway for degradation of long‐lived proteins and organelles and regulates cell fate in response to stress. Beclin 1 is a key regulator of this process. In some settings autophagy and apoptosis seem to be interconnected. Recent reports indicate that fibroblasts in idiopathic pulmonary fibrosis (IPF) acquire resistance to apoptosis. Here, we examined the expression of beclin 1, and of the anti apoptotic protein Bcl‐2 in human IPF fibroblasts using immunohistochemistry and molecular biology in bioptic sections, in primary cultures of fibroblasts taken from patients with IPF and in fibroblast cell lines. Expression of beclin 1 in fibroblasts from IPF was down‐regulated in comparison with fibroblasts from normal lungs while the anti‐apoptotic protein Bcl‐2 expression was over‐expressed. Treatment of fibroblast cell cultures with cisplatin induced a significant increase in beclin 1 and caspase 3 protein levels but a reduction in Bcl‐2 expression. These observations were confirmed by the analysis of acid compartments and transmission electron microscopy. Our results demonstrate a modified expression of the apoptotic beclin 1 Bcl‐2 proteins in human IPF fibroblasts suggesting the existence of an autophagy/apoptosis system dysfunction. J. Cell. Physiol. 228: 1516–1524, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Systemic and pulmonary oxidative stress in idiopathic pulmonary fibrosis.   总被引:7,自引:0,他引:7  
An oxidant/antioxidant imbalance has been proposed in patients with idiopathic pulmonary fibrosis (IPF). We tested this hypothesis by measuring various parameters of the oxidant/antioxidant balance in the plasma of 12 patients with IPF (7 nonsmokers and 5 smokers); in the bronchoalveolar lavage fluid (BALF) of 24 patients with IPF (17 nonsmokers and 7 smokers) and 31 healthy subjects (23 nonsmokers and 8 smokers). The trolox equivalent antioxidant capacity (TEAC) in plasma and BALF was lower in nonsmoking patients with IPF (plasma 0.55+/-0.1 mM, p<.001; BALF 4.8+/-1.2 microM, mean +/-SEM, p<.01), compared with healthy nonsmokers (plasma 1.33+/-0.03 mM; BALF 10+/-2 microM). Similar trends in plasma and BALF TEAC were observed in smoking patients with IPF in comparison with healthy smokers. The decrease in BALF TEAC was concomitant with a decrease in BALF protein thiol levels, but the decrease TEAC levels in plasma in IPF patients was not accompanied by a decrease in protein thiol levels. Reduced glutathione (GSH) was lower in BALF in nonsmoking patients with IPF (1.0+/-0.1 microM) compared with healthy nonsmokers (2.3+/-0.2 microM, p<.001). In contrast, GSH levels were higher in smoking patients with IPF (5.2+/-1.1 microM, p<.001) than in nonsmoking patients. GSSG levels were not different in any of the groups. The levels of products of lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS) in plasma and BALF were significantly increased in both smoking (plasma 2.2+/-0.5 microM, p<.01; BALF 0.18+/-0.04 microM, p<.001), and nonsmoking (plasma 2.1+/-0.3 microM, p<.01; BALF 0.22+/-0.05 microM, p<.001) IPF patients, compared with healthy nonsmokers (plasma 1.4+/-0.3 microM; BALF 0.05+/-0.004 microM). These data show evidence of oxidant/antioxidant imbalance in the lungs of patients with IPF, which is also reflected as systemic oxidant stress.  相似文献   

9.
Signalling pathways from NADPH oxidase-4 to idiopathic pulmonary fibrosis   总被引:1,自引:0,他引:1  
This review focuses on the roles of NADPH oxidase/NOX proteins in idiopathic pulmonary fibrosis (IPF) pathophysiology and in the signalling pathways involved in IPF. NOX proteins are membrane-associated multi-unit enzymes that catalyze the reduction of oxygen using NADPH as an electron donor. Recent studies indicate that NOX4 is induced in pulmonary fibroblasts in response to TGF-β. TGF-β or PDGF induce myofibroblast proliferation, differentiation, migration, contractility and extracellular matrix production, through NOX4 and reactive oxygen species dependent SMAD2/3 phosphorylation. NOX4 is increased in pulmonary fibroblasts from IPF patients and deletion of Nox4 in mice prevents bleomycin-induced pulmonary fibrosis. These data strongly suggest that targeting of NOX4 could be a step forward in the treatment of fibrotic lung diseases, by specifically targeting myofibroblasts, a major player in this disease.  相似文献   

10.
Surfactant protein A has been shown to enhance opsonization and clearance of Staphylococcus aureus in vitro. Here, the phagocytosis of alveolar S. aureus was investigated in vivo using intravital microscopy. Fluorescence labelled S. aureus Newman cells were intratracheally administered to anesthetized mice and the alveolar surface was observed for fifteen minutes. Confirming previously reported in vitro data, surfactant protein A-deficient mice showed a significantly reduced uptake of bacteria compared to wild-type mice.  相似文献   

11.
Cellular and humoral autoreactivity in idiopathic pulmonary fibrosis   总被引:1,自引:0,他引:1  
Idiopathic pulmonary fibrosis (IPF) is a morbid, refractory lung disorder with an unknown pathogenesis. To investigate potential adaptive immune mechanisms in IPF, we compared phenotypes and effector functions of peripheral CD4 T cells, autoantibody production, and proliferative responses of pulmonary hilar lymph node CD4 T cells to autologous lung extracts from afflicted patients and normals. Our results show that greater proportions of peripheral CD4 T lymphocytes in IPF subjects expressed MHC class II and CD154 (CD40L), and they more frequently elaborated TGF-beta1, IL-10, and TNF-alpha. Abnormal CD4 T cell clonal expansions were found in all IPF patients, and 82% of these subjects also had IgG autoantibodies against cellular Ags. IPF lung extracts stimulated proliferations of autologous CD4 T cells, unlike preparations from normals or those with other lung diseases, and the IPF proliferative responses were enhanced by repeated cycles of stimulation. Thus, CD4 T cells from IPF patients have characteristics typical of cell-mediated pathologic responses, including augmented effector functions, provision of facultative help for autoantibody production, oligoclonal expansions, and proliferations driven by an Ag present in diseased tissues. Recognition that an autoreactive immune process is present in IPF can productively focus efforts toward identifying the responsible Ag, and implementing more effective therapies.  相似文献   

12.
Approaching the degradome in idiopathic pulmonary fibrosis   总被引:1,自引:0,他引:1  
Idiopathic pulmonary fibrosis (IPF) is a devastating, lethal and currently untreatable lung disorder of unknown etiology. It is characterized by epithelial injury and activation, fibroblastic foci formation, and exaggerated accumulation of extracellular matrix (ECM) with the destruction of the lung parenchyma. Despite important progress in our understanding of the general mechanisms involved in lung fibrogenesis, the pathogenesis of the IPF remains unclear. Although the irreversible and progressive fibrosis in the lung suggests a decrease in lung degradative machinery, an increasing body of evidence, primarily obtained by global gene expression studies, demonstrates a significant upregulation of degrading enzymes in IPF. In this context, this review will focus on some families of the degradome, a term proposed for the complete set of proteases that are expressed at a specific time by a cell, tissue or an organism. In particular, we will approach recent progress in our understanding of the behavior of two families of metalloproteases M10 and M12 which are significantly changed in the IPF lungs. In general, evidence highlights the increasing diversity in both substrates and functions of these enzymes and the complexity of the processes in which they are involved, and indicate a critical role in the abnormal remodeling of IPF.  相似文献   

13.

Background

Idiopathic Pulmonary Fibrosis (IPF) is characterized by profound changes in the lung phenotype including excessive extracellular matrix deposition, myofibroblast foci, alveolar epithelial cell hyperplasia and extensive remodeling. The role of epigenetic changes in determining the lung phenotype in IPF is unknown. In this study we determine whether IPF lungs exhibit an altered global methylation profile.

Methodology/Principal Findings

Immunoprecipitated methylated DNA from 12 IPF lungs, 10 lung adenocarcinomas and 10 normal histology lungs was hybridized to Agilent human CpG Islands Microarrays and data analysis was performed using BRB-Array Tools and DAVID Bioinformatics Resources software packages. Array results were validated using the EpiTYPER MassARRAY platform for 3 CpG islands. 625 CpG islands were differentially methylated between IPF and control lungs with an estimated False Discovery Rate less than 5%. The genes associated with the differentially methylated CpG islands are involved in regulation of apoptosis, morphogenesis and cellular biosynthetic processes. The expression of three genes (STK17B, STK3 and HIST1H2AH) with hypomethylated promoters was increased in IPF lungs. Comparison of IPF methylation patterns to lung cancer or control samples, revealed that IPF lungs display an intermediate methylation profile, partly similar to lung cancer and partly similar to control with 402 differentially methylated CpG islands overlapping between IPF and cancer. Despite their similarity to cancer, IPF lungs did not exhibit hypomethylation of long interspersed nuclear element 1 (LINE-1) retrotransposon while lung cancer samples did, suggesting that the global hypomethylation observed in cancer was not typical of IPF.

Conclusions/Significance

Our results provide evidence that epigenetic changes in IPF are widespread and potentially important. The partial similarity to cancer may signify similar pathogenetic mechanisms while the differences constitute IPF or cancer specific changes. Elucidating the role of these specific changes will potentially allow better understanding of the pathogenesis of IPF.  相似文献   

14.

Background

Idiopathic pulmonary fibrosis exhibits differential progression from the time of diagnosis but the molecular basis for varying progression rates is poorly understood. The aim of the present study was to ascertain whether differential miRNA expression might provide one explanation for rapidly versus slowly progressing forms of IPF.

Methodology and Principal Findings

miRNA and mRNA were isolated from surgical lung biopsies from IPF patients with a clinically documented rapid or slow course of disease over the first year after diagnosis. A quantitative PCR miRNA array containing 88 of the most abundant miRNA in the human genome was used to profile lung biopsies from 9 patients with rapidly progressing IPF, 6 patients with slowly progressing IPF, and 10 normal lung biopsies. Using this approach, 11 miRNA were significantly increased and 36 were significantly decreased in rapid biopsies compared with normal biopsies. Slowly progressive biopsies exhibited 4 significantly increased miRNA and 36 significantly decreased miRNA compared with normal lung. Among the miRNA present in IPF with validated mRNA targets were those with regulatory effects on epithelial-mesenchymal transition (EMT). Five miRNA (miR-302c, miR-423-5p, miR-210, miR-376c, and miR-185) were significantly increased in rapid compared with slow IPF lung biopsies. Additional analyses of rapid biopsies and fibroblasts grown from the same biopsies revealed that the expression of AGO1 and AGO2 (essential components of the miRNA processing RISC complex) were lower compared with either slow or normal lung biopsies and fibroblasts.

Conclusion

These findings suggest that the development and/or clinical progression of IPF might be the consequence of aberrant miRNA processing.  相似文献   

15.
Idiopathic pulmonary fibrosis (IPF) is a progressive and usually fatal lung disease that lacking effective interventions. It is well known that aberrant activation of transforming growth factor-beta1 (TGF-β1) frequently promotes epithelial-mesenchymal transition (EMT) in IPF. Metastasis-associated gene 1 (MTA1) has identified as an oncogene in several human tumours, and aberrant MTA1 expression has been related to the EMT regulation. However, its expression and function in IPF remain largely unexplored. Using a combination of in vitro and in vivo studies, we found that MTA1 was significantly up-regulated in bleomycin-induced fibrosis rats and TGF-β1-treated alveolar type Ⅱ epithelial (RLE-6TN) cells. Overexpression of MTA1 induced EMT of RLE-6TN cells, as well as facilitates cell proliferation and migration. In contrast, knockdown of MTA1 reversed TGF-β1-induced EMT of RLE-6TN cells. The pro-fibrotic action of MTA1 was mediated by increasing Snail expression through up-regulating Snail promoter activity. Moreover, inhibition of MTA1 effectively attenuated bleomycin-induced fibrosis in rats. Additionally, we preliminarily found astragaloside IV (ASV), which was previously validated having inhibitory effects on TGF-β1-induced EMT, could inhibit MTA1 expression in TGF-β1-treated RLE-6TN cells. These findings highlight the role of MTA1 in TGF-β1-mediated EMT that offer novel strategies for the prevention and treatment of IPF.  相似文献   

16.
Idiopathic pulmonary fibrosis (IPF) is a severe, incurable, age-associated respiratory disorder that has gained significance because of its unknown etiology and lack of therapeutic approaches. IPF causes maximum damage to the alveolar epithelial cells, thereby leading to lung remodeling and initiating epithelial to mesenchymal transition (EMT). The actual molecular mechanisms underlying IPF still remain unclear, and knowledge about these mechanisms would be helpful in its diagnosis. Sirtuins (Sirt) are class of NAD+-dependent proteins, widely known to exert positive and protective effects on age-related diseases such as diabetes, cancer, and so on, and are also involved in regulating IPF. The sirtuin family comprises of seven members (Sirt1 to Sirt7), out of which Sirt1, Sirt3, Sirt6, and Sirt7 exert positive effects on IPF. Sirt1 is associated with aging and inhibits cellular senescence and fibrosis. Sirt1 is well recognized in controlling pulmonary fibrosis and is also considered as a prime positive mediator of EMT. The expressions of Sirt3 protein tend to decline in IPF patients; hence it is known as an anti-fibrotic protein. Sirt6 indeed has been proven to reduce EMT during IPF. Decreased levels of Sirt7 during IPF regulate lung fibroblasts. Hence, active levels of Sirt1, Sirt3, Sirt6, and Sirt7 can be attractive target models to elucidate a novel potential therapeutic approach for IPF. In this prospect, we have discussed the role of Sirtuins in pulmonary fibrosis by exploring the recent research evidence that highlight the role of sirtuins and also describes their protective effects.  相似文献   

17.
近年来研究发现微RNA(microRNA,miRNA)与机体人部分生理、病理过程均有密切关系,如:组织的发育和分化、组织再生、病毒防御以及细胞增殖与凋亡等。miRNA在特发性肺纤维化(IPF)中的作用也日渐为研究者所重视,在IPF中有些miRNA上调(如miR-155、miR-21),有些下调(如let-7、miR-29、miR-200)。这一发现为寻找IPF治疗方法提供了一个新的突破口。本文对近年来miRNA在IPF中作用的研究进展进行了综述,并对miRNA-21、let-7d、miRNA-155、miRNA-29以及miRNA-200在肺纤维化中的作用分别进行了阐述,为研究miRNA征IPF中的作用及机制提供一定参考。  相似文献   

18.
Idiopathic pulmonary fibrosis (IPF) is a chronic, fibrosing interstitial lung disease that primarily affects older adults. Median survival after diagnosis is 2–3 years. The clinical course of IPF may include periods of acute deterioration in respiratory function, which are termed acute exacerbations of IPF (AEx-IPF) when a cause cannot be identified. AEx-IPF may represent a sudden acceleration of the underlying disease process of IPF, or a biologically distinct pathological process that is clinically undiagnosed. An AEx-IPF can occur at any time during the course of IPF and may be the presenting manifestation. The incidence of AEx-IPF is hard to establish due to variation in the methodology used to assess AEx-IPF in different studies, but AEx-IPF are believed to occur in between 5 and 10% of patients with IPF every year. Risk factors for AEx-IPF are unclear, but there is evidence that poorer lung function increases the risk of an AEx-IPF and reduces the chances of a patient surviving an AEx-IPF. The presence of comorbidities such as gastroesophageal reflux disease (GERD) and pulmonary hypertension may also increase the risk of an AEx-IPF. AEx-IPF are associated with high morbidity and mortality. Patients who experience an AEx-IPF show a worsened prognosis and AEx-IPF are believed to reflect disease progression in IPF. Current treatments for AEx-IPF have only limited data to support their effectiveness. The latest international treatment guidelines state that supportive care remains the mainstay of treatment for AEx-IPF, but also give a weak recommendation for the treatment of the majority of patients with AEx-IPF with corticosteroids. There is emerging evidence from clinical trials of investigational therapies that chronic treatment of IPF may reduce the incidence of AEx-IPF. Additional clinical trials investigating this are underway.  相似文献   

19.
In idiopathic pulmonary fibrosis (IPF) patients the presence of missense polymorphisms (SNP) in members of the epidermal growth factor receptor (EGFR) family or their genetic association could influence the binding affinity of natural ligands, modifying the expression and the behavior of the correlated genes. EGFR family members are particularly involved in the epithelial injury and fibrotic process in IPF. Genetic variations in HER family of receptors may alter the possible therapeutic efficacy of EGFR inhibitors. This study aimed to analyze the relationships between IPF and specific EGF receptor family functional polymorphisms. We tested the presence of common EGFR, HER2 and HER3 non-synonymous SNPs in the peripheral blood of 20 Italian IPF patients and their association with the disease. Our data indicated that the HER2 variant allele frequency was significantly lower in patients than in controls, with an odds ratio of 0.31 (95% CI 0.080, 0.98). Our finding suggests that HER2 variant could be a protective factor against IPF onset.  相似文献   

20.
Little is known about the pathophysiology of acute exacerbation (AE) of idiopathic pulmonary fibrosis (IPF). Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is essential for biosynthesis and secretion of collagen molecules. Previous studies in experimental animal fibrosis models have shown that downregulation of HSP47 expression reduces collagen production and diminishes fibrosis progression. In this study, serum HSP47 levels were evaluated to elucidate pathogenic differences involving HSP47 between AE-IPF and stable (S)-IPF. Subjects comprised 20 AE-IPF and 33 S-IPF patients. Serum levels of HSP47, Krebs von den Lungen-6 (KL-6), surfactant protein (SP)-A, SP-D, and lactate dehydrogenase (LDH) were measured. Immunohistochemical analysis of lung HSP47 expression was determined in biopsy and autopsy tissues diagnosed as diffuse alveolar damage (DAD) and usual interstitial pneumonia (UIP). Serum levels of HSP47 were significantly higher in AE-IPF than in S-IPF patients, whereas serum levels of KL-6, SP-A, and SP-D did not differ significantly. Receiver operating characteristic curves revealed that HSP47 was superior for discriminating AE-IPF and S-IPF. The cutoff for HSP47 resulting in the highest diagnostic accuracy was 559.4 pg/mL; sensitivity, specificity, and diagnostic accuracy were 100.0 %, 93.9 %, and 96.2 %, respectively. Immunohistochemical analysis revealed that pulmonary HSP47 expression was greater in DAD than UIP tissues. Serum HSP47 was significantly higher in AE-IPF than in S-IPF patients, suggesting that underlying fibrogenic mechanisms involving HSP47 differ in the two conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号