首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Procedures were developed for the optimal solubilization of D-lactate dehydrogenase, D-mandelate dehydrogenase, L-lactate dehydrogenase and L-mandelate dehydrogenase from wall + membrane fractions of Acinetobacter calcoaceticus. D-Lactate dehydrogenase and D-mandelate dehydrogenase were co-eluted on gel filtration, as were L-lactate dehydrogenase and L-mandelate dehydrogenase. All four enzymes could be separated by ion-exchange chromatography. D-Lactate dehydrogenase and D-mandelate dehydrogenase were purified by cholate extraction, (NH4)2SO4 fractionation, gel filtration, ion-exchange chromatography and chromatofocusing. The properties of D-lactate dehydrogenase and D-mandelate dehydrogenase were similar in several respects: they had relative molecular masses of 62 800 and 59 700 respectively, pI values of 5.8 and 5.5, considerable sensitivity to p-chloromercuribenzoate, little or no inhibition by chelating agents, and similar responses to pH. Both enzymes appeared to contain non-covalently bound FAD as cofactor.  相似文献   

2.
A quick, reliable, purification procedure was developed for purifying both benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II from a single batch of Acinetobacter calcoaceticus N.C.I.B. 8250. The procedure involved disruption of the bacteria in the French pressure cell and preparation of a high-speed supernatant, followed by chromatography on DEAE-Sephacel, affinity chromatography on Blue Sepharose CL-6B and Matrex Gel Red A, and finally gel filtration through a Superose 12 fast-protein-liquid-chromatography column. The enzymes co-purified as far as the Blue Sepharose CL-6B step were separated on the Matrex Gel Red A column. The final preparations of benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II gave single bands on electrophoresis under non-denaturing conditions or on SDS/polyacrylamide-gel electrophoresis. The enzymes are tetramers, as judged by comparison of their subunit (benzyl alcohol dehydrogenase, 39,700; benzaldehyde dehydrogenase II, 55,000) and native (benzyl alcohol dehydrogenase, 155,000; benzaldehyde dehydrogenase II, 222,500) Mr values, estimated by SDS/polyacrylamide-gel electrophoresis and gel filtration respectively. The optimum pH values for the oxidation reactions were 9.2 for benzyl alcohol dehydrogenase and 9.5 for benzaldehyde dehydrogenase II. The pH optimum for the reduction reaction for benzyl alcohol dehydrogenase was 8.9. The equilibrium constant for oxidation of benzyl alcohol to benzaldehyde by benzyl alcohol dehydrogenase was determined to be 3.08 x 10(-11) M; the ready reversibility of the reaction catalysed by benzyl alcohol dehydrogenase necessitated the development of an assay procedure in which hydrazine was used to trap the benzaldehyde formed by the NAD+-dependent oxidation of benzyl alcohol. The oxidation reaction catalysed by benzaldehyde dehydrogenase II was essentially irreversible. The maximum velocities for the oxidation reactions catalysed by benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase II were 231 and 76 mumol/min per mg of protein respectively; the maximum velocity of the reduction reaction of benzyl alcohol dehydrogenase was 366 mumol/min per mg of protein. The pI values were 5.0 for benzyl alcohol dehydrogenase and 4.6 for benzaldehyde dehydrogenase II. Neither enzyme activity was affected when assayed in the presence of a range of salts. Absorption spectra of the two enzymes showed no evidence that they contain any cofactors such as cytochrome, flavin, or pyrroloquinoline quinone. The kinetic coefficients of the purified enzymes with benzyl alcohol, benzaldehyde, NAD+ and NADH are also presented.  相似文献   

3.
The activity of dehydrogenase in Saccharomyces cerevisiae was estimated by reduction of 2,3,5-triphenyltetrazolium chloride. By the adaptation of yeast to cadmium, the high activity of dehydrogenase was observed. Furthermore, the activity of dehydrogenase in Cd-resistant cells was increased by growing in medium containing CdSO4. However, the activity of dehydrogenase was inhibited by the addition of CdSO4 to the reaction mixture. The activity of dehydrogenase in Cd-sensitive cells was increased slightly by incubation with low concentrations of CdSO4. High activity of dehydrogenase in Cd-resistant cells was completely negated by the addition of cycloheximide to the incubation medium. The increase of dehydrogenase activity is due partly to de novo synthesis of protein.  相似文献   

4.
Binding of 8-anilinonaphthalene sulfonate (ANS) to glutamate dehydrogenase results in enzyme inhibition and a marked increase in the fluorescence of ANS. Perphenazine and GTP increase the fluorescence of ANS-glutamate dehydrogenase secondary to their known ability to alter the conformation of this enzyme. Aspartate aminotransferases, which form enzyme-enzyme complexes with glutamate dehydrogenase, produce a slight decrease in the fluorescence of ANS-glutamate dehydrogenase.While ANS and perphenazine are allosteric inhibitors of reactions catalyzed by free glutamate dehydrogenase, they do not inhibit reactions catalyzed by aminotransferaseglutamate dehydrogenase complexes. This is in spite of the fact that the aminotransferase does not prevent either ANS or perphenazine from being bound to glutamate dehydrogenase. Therefore, reactions catalyzed by the enzyme-enzyme complex are apparently not inhibited by ANS or perphenazine because binding of the aminotransferase to glutamate dehydrogenase prevents these ligands from altering the conformation of glutamate dehydrogenase. This is consistent with the fact that the aminotransferase also prevents perphenazine from enhancing the fluorescence of ANS-glutamate dehydrogenase.Reactions catalyzed by the enzyme-enzyme complex are inhibited by GTP and the aminotransferase does not prevent GTP from enhancing the fluorescence of ANS-glutamate dehydrogenase. Therefore, binding of the aminotransferase to glutamate dehydrogenase does not prevent GTP from altering the conformation of glutamate dehydrogenase.The fact that the aminotransferase completely prevents perphenazine from increasing the fluorescence of ANS-glutamate dehydrogenase suggests that in the enzymeenzyme complex each glutamate dehydrogenase polypeptide chain can be bound to an aminotransferase polypeptide chain. This would mean that three aminotransferase molecules can be bound to each monomeric unit (Mr 3 × 105) of glutamate dehydrogenase.  相似文献   

5.
The regulation of alpha-ketogluterate dehydrogenase, succinate dehydrogenase, fumarase, malate dehydrogenase, and malic enzyme has been studied in Bacillus subitilis. The levels of these enzymes increase rapidly during late exponential phase in a complex medium and are maximal 1 to 2 h after the onset of sporulation. Regulation of enzyme synthesis has been studied in the wild type and different citric acid cycle mutants by adding various metabolites to the growth medium. Alpha-ketoglutarate dehydrogenase is induced by glutamate or alpha-ketoglutarate; succinate dehydrogenase is repressed by malate; and fumarase and malic enzyme are induced by fumarate and malate, respectively. The addition of glucose leads to repression of the citric acid cycle enzymes whereas the level of malic enzyme is unaffected. Studies on the control of enzyme activities in vitro have shown that alpha-ketoglutarate dehydrogenase and succinate dehydrogenase are inhibited by oxalacetate. Enzyme activities are also influenced by the energy level, expressed as the energy charge of the adenylate pool. Isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malic enzyme are inhibited at high energy charge values, whereas malate dehydrogenase is inhibited at low energy charge. A survey of the regulation of the citric acid cycle in B.subtilis, based on the present work and previously reported results, is presented and discussed.  相似文献   

6.
Regulation of valine catabolism in Pseudomonas putida   总被引:2,自引:10,他引:2       下载免费PDF全文
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amino acid transaminase and isobutyryl-CoA dehydrogenase were synthesized constitutively. d-Amino acid dehydrogenase and branched-chain keto acid dehydrogenase were induced during growth on valine, leucine, and isoleucine, and these enzymes were assumed to be common to the metabolism of all three branched-chain amino acids. The segment of the pathway required for oxidation of isobutyrate was induced by growth on isobutyrate or 3-hydroxyisobutyrate without formation of the preceding enzymes. d-Amino acid dehydrogenase was induced by growth on l-alanine without formation of other enzymes required for the catabolism of valine. d-Valine was a more effective inducer of d-amino acid dehydrogenase than was l-valine. Therefore, the valine catabolic pathway was induced in three separate segments: (i) d-amino acid dehydrogenase, (ii) branched-chain keto acid dehydrogenase, and (iii) 3-hydroxyisobutyrate dehydrogenase plus methylmalonate semialdehyde dehydrogenase. In a study of the kinetics of formation of the inducible enzymes, it was found that 3-hydroxyisobutyrate and methylmalonate semialdehyde dehydrogenases were coordinately induced. Induction of enzymes of the valine catabolic pathway was studied in a mutant that had lost the ability to grow on all three branched-chain amino acids. Strain PpM2106 had lowered levels of branched-chain amino acid transaminase and completely lacked branched-chain keto acid dehydrogenase when grown in medium which contained valine. Addition of 2-ketoisovalerate, 2-ketoisocaproate, or 2-keto-3-methylvalerate to the growth medium of strain PpM2106 resulted in induction of normal levels of branched-chain keto acid dehydrogenase; therefore, the branched-chain keto acids were the actual inducers of branched-chain keto acid dehydrogenase.  相似文献   

7.
Pyrene maleimide is shown to be a 'half of the sites' reagent for glutamate dehydrogenase and for glyceraldehyde-3-phosphate dehydrogenase. The modified residues are identified as cysteine-115 for glutamate dehydrogenase and cysteine-149 for glyceraldehyde-3-phosphate dehydrogenase. The two enzymes react differently with pyrene maleimide. Whereas the hydrophobic environment of cysteine-115 directs the modification of glutamate dehydrogenase, the high reactivity of cysteine-149 determines the specific modification of glyceraldehyde-3-phosphate dehydrogenase. Glutamate dehydrogenase activity is unaltered by the modification: glyceraldehyde-3-phosphate dehydrogenase activity in inhibited.  相似文献   

8.
The activity of dehydrogenase in Saccharomyces cerevisiae was estimated by reduction of 2,3,5-triphenyltetrazolium chloride. By the adaptation of yeast to cadmium, the high activity of dehydrogenase was observed. Furthermore, the activity of dehydrogenase in Cd-resistant cells was increased by growing in medium containing CdSO4. However, the activity of dehydrogenase was inhibited by the addition of CdSO4 to the reaction mixture. The activity of dehydrogenase in Cd-sensitive cells was increased slightly by incubation with low concentrations of CdSO4.High activity of dehydrogenase in Cd-resistant cells was completely negated by the addition of cycloheximide to the incubation medium. The increase of dehydrogenase activity is due partly to de novo synthesis of protein.  相似文献   

9.
We purified retinol dehydrogenase from bovine rod outer segments using polyethylene glycol precipitation and hydroxylapatite, concanavalin A-Sepharose CL-4B, and Sepharose CL-6B column chromatography in the presence of NADP. We obtained 13-fold purification of retinol dehydrogenase with specific activity of 61.8 nmol/min/mg and 3.8% recovery. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that retinol dehydrogenase had a molecular mass of 37,000 daltons. The Km values of purified retinol dehydrogenase for all-trans retinol and all-trans retinal were 6.6 mM and 0.085 mM, respectively. The purified enzyme reacted with the all-trans retinal but not with 13-, 11-, and 9-cis compounds. In addition, we prepared antibody to retinol dehydrogenase using rat. The anti-retinol dehydrogenase antibody precipitated retinol dehydrogenase activity and was confirmed to bind to 37-kDa protein by Western blotting. We also found that anti-retinol dehydrogenase antibody bound to bovine rod outer segments specifically by immunohistochemical technique. The molar ratio of retinol dehydrogenase to opsin in rod outer segments estimated by enzyme-linked immunosorbent assay was 1:140.  相似文献   

10.
The segmentation of the proximal tubules in the kidney of the female rat was studied by means of enzyme histochemical reactions and the results compared with those observed in male and recently described by Jacobsen and J0rgensen (1973 a). Reactions were performed for the following soluble, coezyme-dependent oxido-reductases: glucose 6-phosphate dehydrogenase, alpha-glycerophosphate dehydrogenase, 3 alpha-hydroxysteroid dehydrogenase, NAD-as well as NADP-dependent isocitrate dehydrogenases, NAD-dependent malate dehydrogenase, NADP-dependent, decarboxylating malate dehydrogenase, uridine diphosphate glucose dehydrogenase. Measures were taken to reduce enzyme diffusion and eliminate interference from tissue tetrazolium reductases. Furthermore, reactions were performed for a number of less soluble or insoluble enzymes: glucose 6-phosphatase, mitochondrial alpha-glycerophosphate dehydrogenase, beta-hydroxybutyrate dehydrogenase, succinate dehydrogenase and tetrazolium reductases. In the proximal tubules of the female rat all enzymes studied--except beta-hydroxybutyrate dehydrogenase--showed segmental differences, most of them clearly revealing three segments. Sex differences were found concerning all enzymes except uridine diphosphate glucose dehydrogenase and NADP-dependent isocitrate dehydrogenase. The most pronounced sex-related differences were seen in the third segment in which part the male rat showed highest activity in respect to tetrazolium reductases, NAD-dependent isocitrate dehydrogenase, succinate dehydrogenase, beta-hydroxybutyrate dehydrogenase, 3 alpha-hydroxysteroid dehydrogenase and glucose 6-phosphate dehydrogenase and the female in respect to glucose 6-phosphatase, alpha-glycerophosphate dehydrogenases, and NADP-dependent, decarboxylating malate dehydrogenase. A few of the enzymes exhibited minor sex differences in the first two segments.  相似文献   

11.
The proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart was decreased by alloxan-diabetes or by perfusion with media containing acetate, n-octanoate or palmitate. The total activity of the dehydrogenase was unchanged. 2. Pyruvate (5 or 25mM) or dichloroacetate (1mM) increased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart, presumably by inhibiting the pyruvate dehydrogenase kinase reaction. Alloxan-diabetes markedly decreased the proportion of active dehydrogenase in hearts perfused with pyruvate or dichloroacetate. 3. The total activity of pyruvate dehydrogenase in mitochondria prepared from rat heart was unchanged by diabetes. Incubation of mitochondria with 2-oxo-glutarate plus malate increased ATP and NADH concentrations and decreased the proportion of active pyruvate dehydrogenase. The decrease in active dehydrogenase was somewhat greater in mitochondria prepared from hearts of diabetic rats than in those from hearts of non-diabetic rats. Pyruvate (0.1-10 mM) or dichloroacetate (4-50 muM) increased the proportion of active dehydrogenase in isolated mitochondria presumably by inhibition of the pyruvate dehydrogenase kinase reaction. They were much less effective in mitochondria from the hearts of diabetic rats than in those of non-diabetic rats. 4. The matrix water space was increased in preparations of mitochondria from hearts of diabetic rats. Dichloroacetate was concentrated in the matrix water of mitochondria of non-diabetic rats (approx. 16-fold at 10 muM); mitochondria from hearts of diabetic rats concentrated dichloroacetate less effectively. 5. The pyruvate dehydrogenase phosphate phosphatase activity of rat hearts and of rat heart mitochondria (approx. 1-2 munit/unit of pyruvate dehydrogenase) was not affected by diabetes. 6. The rate of oxidation of [1-14C]pyruvate by rat heart mitochondria (6.85 nmol/min per mg of protein with 50 muM-pyruvate) was approx. 46% of the Vmax. value of extracted pyruvate dehydrogenase (active form). Palmitoyl-L-carnitine, which increased the ratio of [acetyl-CoA]/[CoA] 16-fold, inhibited oxidation of pyruvate by about 90% without changing the proportion of active pyruvate dehydrogenase.  相似文献   

12.
Lipoamide dehydrogenases from various sources were purified and their immunochemical properties were compared. Antibody against rat lipoamide dehydrogenase reacted with rat, human, pig, pigeon and frog enzymes, but not with enzymes from E. coli, yeast and Ascaris. Anti-Ascaris enzyme and anti-E. coli enzyme antibodies reacted with Ascaris and E. coli enzymes, respectively. The pyruvate dehydrogenase subcomplex, which consists of pyruvate dehydrogenase and lipoate acetyltransferase, was prepared by releasing the lipoamide dehydrogenase from rat heart pyruvate dehydrogenase complex by anti-lipoamide dehydrogenase antibody. Lipoamide dehydrogenases from various sources were added to rat pyruvate dehydrogenase subcomplex and the complex overall activity was measured. Each lipoamide dehydrogenase effectively recovered the overall activity of rat pyruvate dehydrogenase subcomplex to 80% of the original activity.  相似文献   

13.
The lpd gene encoding lipoamide dehydrogenase (dihydrolipoamide dehydrogenase; EC 1.8.1.4) was isolated from a library of Pseudomonas fluorescens DNA cloned in Escherichia coli TG2 by use of serum raised against lipoamide dehydrogenase from Azotobacter vinelandii. Large amounts (up to 15% of total cellular protein) of the P. fluorescens lipoamide dehydrogenase were produced by the E. coli clone harbouring plasmid pCJB94 with the lipoamide dehydrogenase gene. The enzyme was purified to homogeneity by a three-step procedure. The gene was subcloned from plasmid pCJB94 and the complete nucleotide sequence of the subcloned fragment (3610 bp) was determined. The derived amino acid sequence of P. fluorescens lipoamide dehydrogenase showed 84% and 42% homology when compared to the amino acid sequences of lipoamide dehydrogenase from A. vinelandii and E. coli, respectively. The lpd gene of P. fluorescens is clustered in the genome with genes for the other components of the 2-oxoglutarate dehydrogenase complex.  相似文献   

14.
Four isoenzymes of aldehyde dehydrogenase were partially purified from rat liver mitochondria by hydroxylapatite chromatography and gel filtration. While three forms display low affinity for acetaldehyde, the fourth is active at extremely low aldehyde concentrations (Km less than or equal to 2 microM) and allows the oxidation of the acetaldehyde formed by catalysis of alcohol dehydrogenase at pH 7.4. Different models of alcohol dehydrogenase have been examined by analysis of progress curves of ethanol oxidation obtained in the presence of low-km aldehyde dehydrogenase. According to the only acceptable model, when the acetaldehyde concentration is kept low by the action of aldehyde dehydrogenase, NADH no longer binds to alcohol dehydrogenase, but acetaldehyde still competes with ethanol for the active site of the enzyme. The seven kinetic parameters of the two enzymes (four for alcohol dehydrogenase and three for aldehyde dehydrogenase) and the equilibrium constant of the reaction catalyzed by alcohol dehydrogenase have been determined by applying a new fitting procedure here described.  相似文献   

15.
Aqueous dispersions of 4 out of 9 phospholipids added individually to the mitochondrial fraction from rat adipocytes altered the activity of pyruvate dehydrogenase in a dose-dependent manner from 1 to 300 microM. Phosphatidylserine increased and phosphatidylcholine, phosphatidylinositol and phosphatidylinositol-4-phosphate decreased enzyme activity. The stimulation of pyruvate dehydrogenase induced by phosphatidylserine may be reversed to below basal activity by phosphatidylinositol-4-phosphate and to basal activity by NaF, a pyruvate dehydrogenase phosphatase inhibitor. The inhibition of pyruvate dehydrogenase induced by phosphatidylinositol-4-phosphate may be restored to basal levels by the addition of calcium. These results suggest that phosphatidylserine activates pyruvate dehydrogenase activity through activation of the phosphatase, perhaps forming a phosphatidylserine-calcium complex. The inhibition by phosphatidylinositol-4-phosphate may be mediated by disruption of the enzyme complex. The phospholipids may play a physiological role in the regulation of pyruvate dehydrogenase activity.  相似文献   

16.
A new method is described that allows the parallel purification of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes from ox heart without the need for prior isolation of mitochondria. All the assayable activity of the 2-oxo acid dehydrogenase complexes in the disrupted tissue is made soluble by the inclusion of non-ionic detergents such as Triton X-100 or Tween-80 in the buffer used for the initial extraction of the enzyme complexes. The yields of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes are many times greater than those obtained by means of previous methods. In terms of specific catalytic activity, banding pattern on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, sedimentation properties and possession of the regulatory phosphokinase bound to the pyruvate dehydrogenase complex, the 2-oxo acid dehydrogenase complexes prepared by the new method closely resemble those described by previous workers. The greatly improved yield of 2-oxo acid dehydrogenase complexes occasioned by the use of Triton X-100 or Tween-80 as solubilizing agent supports the possibility that the bulk of the pyruvate dehydrogenase complex is associated in some way with the mitochondrial inner membrane and is not free in the mitochondrial matrix space.  相似文献   

17.
The pyruvate dehydrogenase component of the bovine kidney pyruvate dehydrogenase complex has two thiamin-PP binding sites per α2β2 tetramer. Titration of these binding sites with the transition state analog, thiamin thiazolone pyrophosphate, strongly inhibits phosphorylation of pyruvate dehydrogenase by pyruvate dehydrogenase kinase and ATP. The analog has little effect, if any, on dephosphorylation of phosphorylated pyruvate dehydrogenase by pyruvate dehydrogenase phosphatase. Phosphorylation of pyruvate dehydrogenase inactivates the enzyme, but does not significantly affect the thiamin-PP binding sites. It appears that phosphorylation produces a conformational change in pyruvate dehydrogenase that displaces a catalytic group (or groups) at the active center.  相似文献   

18.
A sequential reaction was suggested for the conversion of L-alloisocitrate to alpha-oxoglutarate by an enzyme complex of L-alloisocitrate dehydrogenase and oxalosuccinate decarboxylase from Pseudomonas strain No. 2, during which oxalosuccinate was not released from the enzyme-substrate complex. The stereochemistry of oxalosuccinate formed by L-alloisocitrate dehydrogenase and decarboxylated by oxalosuccinate decarboxylase was opposite to that of the substrate for D-isocitrate dehydrogenase. Incubation of L-alloisocitrate with the dehydrogenase and decarboxylase in deuterium oxide provided [3-2H]-alpha-oxoglutarate, the configuration of which turned out to be the same as that produced by D-isocitrate dehydrogenase from D-isocitrate. The data suggested that enol form of alpha-oxoglutarate was involved as an intermediate in decarboxylation of oxalosuccinate by oxalosuccinate decarboxylase. L-Alloisocitrate dehydrogenase was shown to react with pro-S proton of NADH.  相似文献   

19.
We have purified homoserine dehydrogenase to homogeneity and subjected polypeptide fragments derived from digests of the protein to amino acid sequencing. The amino acid sequence of homoserine dehydrogenase from carrot (Daucus carota) indicates that in carrot both aspartokinase and homoserine dehydrogenase activities reside on the same protein. Additional evidence that aspartokinase and homoserine dehydrogenase reside on a bifunctional protein is provided by coelution of activities during purification steps and by enzyme-specific gel staining techniques. Highly purified fractions containing aspartokinase activity were stained for aspartokinase activity, homoserine dehydrogenase activity, and protein. These gels confirmed that aspartokinase activity and homoserine dehydrogenase activity were present on the same protein. This arrangement of aspartokinase and homoserine dehydrogenase activities residing on the same protein is also found in Escherichia coli, which has two bifunctional enzymes, aspartokinase I-homoserine dehydrogenase I and aspartokinase II-homoserine dehydrogenase II. The amino acid sequence of the major form of homoserine dehydrogenase from carrot cell suspension cultures most closely resembles that of the E. coli ThrA gene product aspartokinase I-homoserine dehydrogenase I.  相似文献   

20.
Effect of Streptomycin on Some Enzyme Systems of Bacillus subtilis   总被引:1,自引:0,他引:1       下载免费PDF全文
Streptomycin slightly inhibited lactic and malic dehydrogenases of Bacillus subtilis, and inhibited isocitric dehydrogenase to about 60%. The formation of lactic dehydrogenase, glutamic dehydrogenase, alpha-alanine dehydrogenase, and succinic dehydrogenase was stimulated by the antibiotic at a concentration causing 50% inhibition of bacterial growth. Streptomycin had practically no influence on the formation of malic dehydrogenase, but the antibiotic produced 48% inhibition of the synthesis of isocitric dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号