首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxygenation pattern of the cyclic monoterpenoids of commercial mint (Mentha) species is determined by regiospecific cytochrome P450-catalyzed hydroxylation of the common olefinic precursor (-)-4S-limonene. In peppermint (Mentha x piperita), C3-allylic hydroxylation leads to (-)-trans-isopiperitenol, whereas in spearmint, C6-allylic hydroxylation leads to (-)-trans-carveol. The microsomal limonene-6-hydroxylase was purified from the oil glands of spearmint, and amino acid sequences from the homogeneous enzyme were used to design PCR primers with which a 500-bp amplicon was prepared. This nondegenerate probe was employed to screen a spearmint oil gland cDNA library from which the corresponding full-length cDNA was isolated and subsequently confirmed as the C6-hydroxylase by functional expression using the baculovirus-Spodoptera system. The probe was also utilized to isolate two closely related full-length cDNA species from a peppermint oil gland cDNA library which were confirmed as the limonene-3-hydroxylase by functional expression as before. Deduced sequence analysis of these regiospecific cytochrome P450 monooxygenases indicates that both enzymes bear a typical amino-terminal membrane anchor, consistent with the microsomal location of the native forms, exhibit calculated molecular weights of 56,149 (spearmint) and about 56,560 (peppermint), and are very similar in primary sequence (70% identity and 85% similarity). The availability of these regiochemically distinct, yet very closely related, recombinant hydroxylases and their corresponding genes provides a unique model system for understanding structure-function relationships in cytochrome P450 substrate binding and catalysis, and a means for transgenic manipulation of monoterpene biosynthetic pathways in plants.  相似文献   

2.
Cytochrome P450 mono-oxygenases from peppermint, spearmint and perilla (all members of the family Lamiaceae) mediate the regiospecific hydroxylation of the parent olefin (−)-limonene to produce essential oil components oxygenated at C3, C6 and C7, respectively. Cloning, expression and mutagenesis of cDNAs encoding the peppermint limonene-3-hydroxylase and the spearmint limonene-6-hydroxylase have allowed the identification of a single amino acid residue which determines the regiospecificity of oxygenation by these two enzymes. A hybridization strategy provided a cytochrome P450 limonene hydroxylase cDNA from perilla with which to further evaluate the structural determinants of regiospecificity for oxygenation of the common substrate (−)-limonene. The perilla cDNA was a partial clone of 1550 bp (lacking the N-terminal membrane insertion domain), and shared 66% identity with the peppermint 3-hydroxylase and spearmint 6-hydroxylase at the amino acid level. The perilla cytochrome P450 was expressed in Escherichia coli as a chimeric protein fused with the N-terminal membrane insertion domain of the limonene-3-hydroxylase. The kinetically competent recombinant protein was characterized and shown to produce a mixture of C3-, C6- and C7-hydroxylated limonene derivatives with a distribution of 33%, 14% and 53%, respectively.  相似文献   

3.
Gamma irradiation of Scotch spearmint created a mutant line, 643-10-74, which has an altered essential oil reminiscent of peppermint because the monoterpene metabolites in the oil glands of the mutant are predominantly oxygenated at the C3 position of the p-menthane ring instead of the C6 position normally found in spearmint. The limonene hydroxylase genes responsible for directing the regiochemistry of oxygenation were cloned from Scotch spearmint and mutant 643 and expressed in Escherichia coli. The limonene bydroxylase from the wild-type parent hydroxylated the C6 position while the enzyme from the mutant oxygenated the C3 position. Comparison of the amino acid sequences with other limonene hydroxylases showed that the mutant enzyme was more closely related to the peppermint limonene-3-hydroxylases than to the spearmint limonene-6-hydroxylases. Because of the sequence differences between the Scotch spearmint and mutant 643 limonene hydroxylases, it is most likely that the mutation did not occur within the structural gene for limonene hydroxylase but rather at a regulatory site within the genome that controls the expression of one or the other regiospecific variants.  相似文献   

4.
5.
A radiation-induced mutant of Scotch spearmint (Mentha × gracilis) was shown to produce an essential oil containing principally C3-oxygenated p-menthane monoterpenes that are typical of peppermint, instead of the C6-oxygenated monoterpene family characteristic of spearmint. In vitro measurement of all of the enzymes responsible for the production of both the C3-oxygenated and C6-oxygenated families of monoterpenes from the common precursor (−)-limonene indicated that a virtually identical complement of enzymes was present in wild type and mutant, with the exception of the microsomal, cytochrome P-450-dependent (−)-limonene hydroxylase; the C6-hydroxylase producing (−)-trans-carveol in the wild type had been replaced by a C3-hydroxylase producing (−)-trans-isopiperitenol in the mutant. Additionally, the mutant, but not the wild type, could carry out the cytochrome P-450-dependent epoxidation of the α,β-unsaturated bond of the ketones formed via C3-hydroxylation. Although present in the wild type, the enzymes of the C3-pathway that convert trans-isopiperitenol to menthol isomers are synthetically inactive because of the absence of the key C3-oxygenated intermediate generated by hydroxylation of limonene. These results, which clarify the origins of the C3- and C6-oxygenation patterns, also allow correction of a number of earlier biogenetic proposals for the formation of monoterpenes in Mentha.  相似文献   

6.

Main conclusion

In contrast to current knowledge, the B -ring hydroxylation pattern of anthocyanins can be determined by the hydroxylation of leucoanthocyanidins in the 3′ position by flavonoid 3’-hydroxylase.

Abstract

The cytochrome P450-dependent monooxygenases flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) are key flavonoid enzymes that introduce B-ring hydroxyl groups in positions 3′ or 3′ and 5′, respectively. The degree of B-ring hydroxylation is the major determinant of the hue of anthocyanin pigments. Numerous studies have shown that F3′H and F3′5′H may act on more than one type of anthocyanin precursor in addition to other flavonoids, but it has been unclear whether the anthocyanin precursor of the leucoanthocyanidin type can be hydroxylated as well. We have investigated this in vivo using feeding experiments and in vitro by studies with recombinant F3′H. Feeding leucoanthocyanidins to petal tissue with active hydroxylases resulted in anthocyanidins with increased B-ring hydroxylation relative to the fed leucoanthocyanidin, indicating the presence of 3′-hydroxylating activity (in Petunia and Eustoma grandiflorum Grise.) and 3′,5′-hydroxylating activity (in E. grandiflorum Grise.). Tetcyclacis, a specific inhibitor of cytochrome P450-dependent enzymes, abolished this activity, excluding involvement of unspecific hydroxylases. While some hydroxylation could be a consequence of reverse catalysis by dihydroflavonol 4-reductase (DFR) providing an alternative substrate, hydroxylating activity was still present in fed petals of a DFR deficient petunia line. In vitro conversion rates and kinetic data for dLPG (a stable leucoanthocyanidin substrate) were comparable to those for other flavonoids for nine of ten recombinant flavonoid hydroxylases from various taxa. dLPG was a poor substrate for only the recombinant Fragaria F3′Hs. Thus, the B-ring hydroxylation pattern of anthocyanins can be determined at all precursor levels in the pathway.  相似文献   

7.
Funk C  Croteau R 《Plant physiology》1993,101(4):1231-1237
(+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O2-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl2, camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn2+-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases.  相似文献   

8.
(+)-Menthofuran is an undesirable monoterpenoid component of peppermint (Mentha x piperita) essential oil that is derived from the alpha,beta-unsaturated ketone (+)-pulegone. Microsomal preparations, from the oil gland secretory cells of a high (+)-menthofuran-producing chemotype of Mentha pulegium, transform (+)-pulegone to (+)-menthofuran in the presence of NADPH and molecular oxygen, implying that menthofuran is synthesized by a mechanism analogous to that of mammalian liver cytochrome P450s involving the hydroxylation of the syn-methyl group of (+)-pulegone, spontaneous intramolecular cyclization to the hemiketal, and dehydration to the furan. An abundant cytochrome P450 clone from a peppermint oil gland cell cDNA library was functionally expressed in Saccharomyces cerevisiae and Escherichia coli and shown to encode the (+)-menthofuran synthase (i.e., (+)-pulegone-9-hydroxylase). The full-length cDNA contains 1479 nucleotides, and encodes a protein of 493 amino acid residues of molecular weight 55,360, which bears all of the anticipated primary structural elements of a cytochrome P450 and most closely resembles (35% identity) a cytochrome P450 monoterpene hydroxylase, (+)-limonene-3-hydroxylase, from the same source. The availability of this gene permits transgenic manipulation of peppermint to improve the quality of the derived essential oil.  相似文献   

9.
The use of three mechanism-based probes to investigate the topology and function of fatty acid hydroxylases is discussed. 1) The observation of protein rather than heme alkylation in the reaction of cytochrome P4504A1 with 10-undecynoic acid supports the argument that the enzyme circumvents the inherent preference for omega-1 hydroxylation by restricting access to the ferryl oxygen. 2) The regiochemistry of the ferricyanide-mediated iron-to-nitrogen shift of the cytochrome P450102 (P450BM-3) phenyl-iron complex indicates that the active site of this bacterial fatty acid hydroxylase is open primarily above pyrrole ring A of the prosthetic heme group, 3) Inhibition of clofibrate-mediated peroxisome proliferation in cultured rat hepatocytes by inactivation of cytochrome P4504A1 indicates that omega-hydroxylation of fatty acids provides a signal for peroxisome proliferation.  相似文献   

10.
Cytochrome P450 oxygenases of Taxol biosynthesis   总被引:3,自引:0,他引:3  
  相似文献   

11.
Triterpenes exhibit a wide range of structural diversity produced by a sequence of biosynthetic reactions. Cyclization of oxidosqualene is the initial origin of structural diversity of skeletons in their biosynthesis, and subsequent regio- and stereospecific hydroxylation of the triterpene skeleton produces further structural diversity. The enzymes responsible for this hydroxylation were thought to be cytochrome P450-dependent monooxygenase, although their cloning has not been reported. To mine these hydroxylases from cytochrome P450 genes, five genes (CYP71D8, CYP82A2, CYP82A3, CYP82A4 and CYP93E1) reported to be elicitor-inducible genes in Glycine max expressed sequence tags (EST), were amplified by PCR, and screened for their ability to hydroxylate triterpenes (beta-amyrin or sophoradiol) by heterologous expression in the yeast Saccharomyces cerevisiae. Among them, CYP93E1 transformant showed hydroxylating activity on both substrates. The products were identified as olean-12-ene-3beta,24-diol and soyasapogenol B, respectively, by GC-MS. Co-expression of CYP93E1 and beta-amyrin synthase in S. cerevisiae yielded olean-12-ene-3beta,24-diol. This is the first identification of triterpene hydroxylase cDNA from any plant species. Successful identification of a beta-amyrin and sophoradiol 24-hydroxylase from the inducible family of cytochrome P450 genes suggests that other triterpene hydroxylases belong to this family. In addition, substrate specificity with the obtained P450 hydroxylase indicates the two possible biosynthetic routes from triterpene-monool to triterpene-triol.  相似文献   

12.
A filamentous fungus Cunninghamella elegans IM 1785/21Gp which displays ability of 17alpha,21-dihydroxy-4-pregnene-3,20-dione (cortexolone) 11-hydroxylation (yielding epihydrocortisone (eF) and hydrocortisone (F)) and polycyclic aromatic hydrocarbons (PAHs) degradation, was used as a microbial eucaryotic model to study the relationships between mammalian steroid hydroxylation and PAHs metabolization. The obtained results showed faster transformation of phenanthrene in Sabouraud medium supplemented with steroid substrate (cortexolone). Simultaneously phenanthrene stimulated epihydrocortisone production from cortexolone. In phenanthrene presence the ratio between cortexolone hydroxylation products (hydrocortisone and epihydrocortisone) was changed from 1:5.1-6.2 to 1:7.6-8.4 in the culture without phenanthrene. Cytochrome P-450 content significantly increased after the culture supplementation by the second substrate, phenanthrene or cortexolone, adequately. To confirm the involvement of cytochrome P-450 in phenanthrene metabolism, the inhibition studies were performed. The cytochrome P-450 inhibitors SKF 525-A (1.5mM) and 2-methyl-1,2-di-3-pyridyl-1-propanone (metyrapone) (2mM) inhibited phenanthrene transformation by 80 and 62%, respectively. 1-aminobenzotriazole (1mM) completely blocked phenanthrene metabolism. The obtained results suggest a presence of connections between steroid hydroxylases and enzymes involved in PAH degradation in C. elegans.  相似文献   

13.
Limonene enantiomers and substrate analogs, including specifically fluorinated derivatives, were utilized to probe active site interactions with recombinant (-)-(4S)-limonene-3-hydroxylase (CYP71D13) and (-)-(4S)-limonene-6-hydroxylase (CYP71D18) from mint (Mentha) species. (-)-(4S)-Limonene is hydroxylated by both enzymes at the designated C3- and C6-allylic positions, with strict regio- and stereospecificity and without detectable allylic rearrangement, to give the corresponding products (-)-trans-isopiperitenol and (-)-trans-carveol. CYP71D13-catalyzed hydroxylation of (+)-(4R)-limonene also yields the corresponding trans-3-hydroxylated product ((+)-transisopiperitenol); however, the C6-hydroxylase converts (+)-(4R)-limonene to a completely different product profile dominated by the enantiopure cis-6-hydroxylated product (+)-cis-carveol along with several minor products, including both enantiomers of the trans-6-hydroxylated product ((+/-)-trans-carveol), indicating allylic rearrangement during catalysis. These results demonstrate that the regiospecificity and facial stereochemistry of oxygen insertion is dictated by the absolute configuration of the substrate. Fluorinated limonene analogs are also tightly bound by both enzymes and hydroxylated at the topologically congruent positions in spite of the polarizing effect of the fluorine atom on substrate reactivity. This strict retention of oxygenation geometry suggests a rigid substrate orientation imposed by multiple hydrophobic active site contacts. Structurally simplified substrate analogs are hydroxylated at slower rates and with substantial loss of regiospecificity, consistent with a loss of active site complementarity. Evaluation of the product profiles generated allowed assessment of the role of hydrophobic contacts in orienting the substrate relative to the activated oxygen species.  相似文献   

14.
Microsomes from apical buds of pea (Pisum sativum L. var. Téléphone à rames) seedlings hydroxylate lauric acid at the ω-position. This oxidation is catalyzed by a cytochrome P-450 enzyme which differs from laurate hydroxylases previously described in microorganisms and mammals by its strict substrate specificity and the ability of low NADH concentrations to support unusually high oxidation rates. The apparent Km for lauric acid was 20 micromolar. NADPH- and NADH-dependent laurate hydroxylation followed non-Michaelian kinetics with apparent Km values ranging from 0.2 to 28 micromolar for NADPH, and 0.2 to 318 micromolar for NADH. When induced by the photomorphogenic photoreceptor phytochrome, the time course for the enhancement of laurate ω-hydroxylase was totally different from that of the cinnamic acid 4-hydroxylase, providing evidence for the existence of multiple cytochrome P-450 species in pea microsomes.  相似文献   

15.
Rat kidney microsomes have been found to catalyze the hydroxylation of medium-chained fatty acids to the omega- and (omego-1)-hydroxy derivatives. This reaction, which requires NADPH and molecular oxygen, is a function of monooxygenase system present in the kidney microsomes, containing NADPH-cytochrome c reductase and cytochrome P-450K. NADH is about half as effective as an electron donor as NADPH and there is an additive effect in the presence of both nucleotides. Cytochrome P-450K absorbs light maximally at 452-3 nm, when it is reduced and bound to carbon monoxide. The extinction coefficient of this complex is 91 mM(-1) cm(-1). Electrons from NADPH are transferred to cytochrome P-450K via the NADPH-cytochrome c reductase. The reduction rate of cytochrome P-450K is stimulated by added fatty acids and the reduction kinetics reveal the presence of endogenous substrates bound to cytochrome P-450K. Both cytochrome P-450K concentration and fatty acid hydroxylation activity in kidney microsomes are increased by starvation. On the other hand, phenobarbital treatment of the rats has no effect on either the hemoprotein or the overall hydroxylation reaction and 3,4-benzpyrene administration induces a new species of cytochrome P-450K not involved in fatty acid hydroxylation. Cytochrome P-450K shows, in contrast to liver P-450, high substrate specificity. The only substances forming enzyme-substrate complexes with cytochrome P-450K are the medium-chained fatty acids and certain derivatives of these acids. The chemical requirements for substrate binding include a carbon chain of medium length and at the end of the chain a carbonyl group and a free electron pair on a neighbouring atom. The distance between the binding site for the carbonyl group and the active oxygen is suggested to be in the order of 16 A. This distance fixes the ratio of omega- and (omega-1)-hydroxylated products formed from a certain fatty acid by the single species of cytochrome P-450K involved. The membrane microenvironment seems also to be of importance for the substrate specificity of cytochrome P-450K, since removal of the cytochrome from the membrane lowers its binding specificity to some extent. A comparison between the liver and kidney cytochrome P-450 systems suggests that the kidney cytochrome P-450K system is specialized for fatty acid hydroxylation.  相似文献   

16.
Wüst M  Croteau RB 《Biochemistry》2002,41(6):1820-1827
The regiochemistry and facial stereochemistry of the limonene-6-hydroxylase- (CYP71D18-) mediated hydroxylation of the monoterpene olefin limonene are determined by the absolute configuration of the substrate. (-)-(4S)-Limonene is hydroxylated at the C6 allylic position to give (-)-trans-carveol as the only product, whereas (+)-(4R)-limonene yields multiple hydroxylation products with (+)-cis-carveol predominating. Specifically deuterated limonene enantiomers were prepared to investigate the net stereospecificity of hydroxylation at C6 and the mechanism of multiple product formation. The results of isotopically sensitive branching experiments of competitive and noncompetitive design were consistent with a nondissociative kinetic mechanism, indicating that (4R)-limonene has sufficient freedom of motion within the active site of CYP71D18 to allow formation of either the trans-3- or cis-6-hydroxylated product. However, the kinetic isotope effects resulting from deuterium abstraction were significantly smaller than expected for an allylic hydroxylation, and they did not approach the intrinsic isotope effect. (4S)-Limonene is oxygenated with almost complete stereospecificity for hydrogen abstraction from the trans-6-position, demonstrating rigid orientation during hydrogen abstraction and hydroxyl delivery. The oxygenation of (4R)-limonene leading to the formation of (+/-)-trans-carveol is accompanied by considerable allylic rearrangement and stereochemical scrambling, whereas the formation of (+)-cis-carveol proceeds without allylic rearrangement and with nearly complete stereospecificity for hydrogen abstraction from the cis-6-position. These results demonstrate that a single cytochrome P450 enzyme catalyzes the hydroxylation of small antipodal substrates with distinct stereochemistries and reveal that substrate-dependent positional motion of the intermediate carbon radical (and, therefore, hydroxylation stereospecificity) is determined by active-site binding complementarity. Thus, epimerization and allylic rearrangement are not inherent features of these reactions but occur when loss of active-site complementarity allows increased substrate mobility.  相似文献   

17.
A simple and rapid method for the determination of (S)-mephenytoin 4-hydroxylase activity by human liver microsomal cytochrome P-450 has been developed. [Methyl-14C] mephenytoin was synthesized by alkylation of S-nirvanol with 14CH3I and used as a substrate. After incubation of [methyl-14C]mephenytoin with human liver microsomes or a reconstituted monooxygenase system containing partially purified human liver cytochrome P-450, the 4-hydroxylated metabolite of mephenytoin was separated by thin-layer chromatography and quantified. The formation of the metabolite depended on the incubation time, substrate concentration, and cytochrome P-450 concentration and was found to be optimal at pH 7.4. The Km and Vmax rates obtained with a human liver microsomal preparation were 0.1 mM and 0.23 nmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450, respectively. The hydroxylation activity showed absolute requirements for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH in a reconstituted monooxygenase system. Activities varied from 5.6 to 156 pmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450 in 11 human liver microsomal preparations. The basic system utilized for the analysis of mephenytoin 4-hydroxylation can also be applied to the estimation of other enzyme activities in which phenol formation occurs.  相似文献   

18.
Cytochrome P450foxy (P450foxy, CYP505) is a fused protein of cytochrome P450 (P450) and its reductase isolated from the fungus Fusarium oxysporum, which catalyzes the subterminal (omega-1 approximately omega-3) hydroxylation of fatty acids. Here, we produced, purified and characterized a fused recombinant protein (rP450foxy) using the Escherichia coli expression system. Purified rP450foxy was catalytically and spectrally indistinguishable from the native protein, but most of the rP450foxy was recovered in the soluble fraction of E. coli cells unlike the membrane-bound native protein. The results are consistent with our notion that the native protein is targeted to the membrane by a post-translational modification mechanism. We also discovered that P450foxy could use shorter saturated fatty acid chains (C9 and C10) as a substrate. The regiospecificity (omega-1 approximately omega-3) of hydroxylation due to the enzymatic reaction for the short substrates (decanoate, C10; undecanoate, C11) was the same as that for longer substrates. Steady state kinetic studies showed that the kcat values for all substrates tested (C9-C16) were of the same magnitude (1200-1800 min-1), whereas the catalytic efficiency (kcat/Km) was higher for longer fatty acids. Substrate inhibition was observed with fatty acid substrates longer than C13, and the degree of inhibition increased with increasing chain length. This substrate inhibition was not apparent with P450BM3, a bacterial counterpart of P450foxy, which was the first obvious difference in their catalytic properties to be identified. Kinetic data were consistent with the inhibition due to binding of the second substrate. We discuss the inhibition mechanism based on differences between P450foxy and P450BM3 in key amino acid residues for substrate binding.  相似文献   

19.
1. The activity of rat liver microsomal drug-metabolizing enzymes was determined at various ages between 6 and 100 days post natum. The enzymes studied were: aromatic hydroxylases by using as substrate biphenyl, which is metabolized by oxidation to 2- and 4-hydroxybiphenyl; nitroreductase by using p-nitrobenzoate as substrate, which is metabolized by reduction to p-aminobenzoate; glucuronyl synthetase by using 4-methylumbelliferone as the substrate, which is conjugated to give 4-methylumbelliferone glucuronide, and cytochrome P-450, which is regarded as the major terminal mixed-function oxidase in hepatic microsomal hydroxylations. 2. The activity of biphenyl 2-hydroxylase reached a peak at 21 days, biphenyl 4-hydroxylase and 4-methyl glucuronyl transferase at 24 days, cytochrome P-450 at 31 days, and p-nitrobenzoate reductase at 38 days of age. After the peak activity had been reached, the activity of each enzyme decreased with age, and in the case of biphenyl 2-hydroxylase the activity fell to a negligible value at 52 days of age. 3. Neither the addition of Triton X-100 to the incubation medium nor the treatment of the animals with phenobarbital resulted in any increase in the activity of biphenyl 2-hydroxylase at 52 days of age. 4. The activity of biphenyl 2-hydroxylase was threefold higher in rats fed on a synthetic diet than in rats fed on a commercial stock diet. 5. These findings are discussed.  相似文献   

20.
Turner GW  Croteau R 《Plant physiology》2004,136(4):4215-4227
We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (-)-(4S)-limonene-6-hydroxylase, peppermint (-)-trans-isopiperitenol dehydrogenase, and peppermint (+)-pulegone reductase. All were localized to the secretory cells of peltate glandular trichomes with abundant labeling corresponding to the secretory phase of gland development. Immunogold labeling of geranyl diphosphate synthase occurred within secretory cell leucoplasts, (-)-4S-limonene-6-hydroxylase labeling was associated with gland cell endoplasmic reticulum, (-)-trans-isopiperitenol dehydrogenase labeling was restricted to secretory cell mitochondria, while (+)-pulegone reductase labeling occurred only in secretory cell cytoplasm. We discuss this pathway compartmentalization in relation to possible mechanisms for the intracellular movement of monoterpene metabolites, and for monoterpene secretion into the extracellular essential oil storage cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号