首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The A-Kinase Anchor Protein AKAP 75 (formerly designated bovine brain P75) is a particulate brain protein that avidly binds the regulatory subunit (RII beta) of cAMP-dependent protein kinase II beta (Bregman, D. B., Hirsch, A.H. and Rubin, C.S. (1991) J. Biol. Chem. 266, 7207-7213). The formation of stable AKAP 75.RII beta complexes provides a potential mechanism for targeting physiological signals carried by cAMP to specific effector sites within neurons and other brain cells. We have now cloned and characterized the AKAP 75 gene. Its coding sequence is novel and unexpectedly short (1284 base pairs) and contains no introns. When the AKAP 75 gene was transfected into HEK 293 cells, a new RII beta-binding protein with an apparent Mr of 75,000 accumulated. A high proportion (approximately 65%) of the AKAP 75 gene product was excluded from the cytoplasm and was recovered in the 40,000 x g pellet derived from disrupted transfected cells. In contrast, cells transfected with a construct encoding 249 amino acids from the central and C-terminal regions of AKAP 75 produced an RII beta-binding protein (apparent Mr = 45,000) that was exclusively cytosolic. AKAP 75 is a novel protein composed of only 428 amino acid residues (Mr = 47,878). A highly acidic C-terminal region mediates the binding of RII beta (and cAMP-dependent protein kinase II beta), whereas a positively charged N-terminal segment contains structural features that are essential for the association of AKAP 75 with the cytoskeleton and/or intracellular membranes.  相似文献   

2.
cDNA clones coding for the regulatory subunit (RII beta) of type II cAMP-dependent protein kinase were isolated from a bovine brain cDNA expression library in lambda gt11. The cDNA codes for a protein of 418 amino acids which is 98% homologous to the rat and human RII beta proteins. A series of expression vectors coding for truncated RII beta proteins were constructed in pATH plasmids and fusion proteins were expressed in Escherichia coli. Polyclonal and monoclonal antibodies made against purified bovine brain RII were immunoreactive with the fusion proteins on Western blots. The expressed RII beta-fusion proteins were used in overlay assays to identify the region in RII beta which binds to microtubule-associated protein 2 (MAP2) and to the 75,000-dalton calmodulin-binding protein (P75) (Sarkar, D., Erlichman, J., and Rubin, C.S. (1984) J. Biol. Chem. 259, 9844-9846) in bovine brain. Fusion protein containing amino acids 1-50 of the RII beta NH2 terminus (RII beta(1-50)] bound to both MAP2 and P75 immobilized on nitrocellulose filters. A pATH11-directed fusion protein containing the 31 amino acid RII-binding site of the human MAP2 protein (MAP2(31)) (Rubino, H.M., Dammerman, M., Shafit-Zagardo, B., and Erlichman, J. (1989) Neuron 3, 631-638) also bound RII beta-fusion proteins containing RII beta amino acids 1-50. Three fusion proteins, RII beta(1-25), RII beta(25-96), and RII beta(1-265,25-96 deleted) did not bind to MAP2(31) nor P75. The results showed that the binding domain for MAP2 and P75 was located within the NH2-terminal 50 amino acids of RII beta. Preincubation of bovine heart protein kinase II alpha and RII beta(1-50) with MAP2(31) prevented their binding to both P75 and MAP2(31) that were immobilized on nitrocellulose, suggesting that the binding sites for MAP2 and P75 are located near each other or that the same site on RII was binding to both proteins.  相似文献   

3.
Postsynaptic densities (PSD) are a network of proteins located on the internal surface of excitatory synapses just inside the postsynaptic membrane. Enzymes associated with the PSD are optimally positioned to respond to signals transduced across the postsynaptic membrane resulting from excitatory synaptic transmission or neurotransmitter release. We present evidence suggesting that type II cAMP-dependent protein kinase (PKA) is anchored to the PSD through interaction of its regulatory subunit (RII) with an A-Kinase Anchor Protein (AKAPs). A cDNA for the human RII-anchoring protein, AKAP 79, was isolated by screening an expression library with radiolabeled RII. This cDNA (2621 base pairs) encodes a protein of 427 amino acids with 76% identity to bovine brain AKAP 75 and 93% identity to a carboxyl-terminal RII-binding fragment of murine brain AKAP 150. A bacterially expressed 92-amino acid fragment, AKAP 79 (335-427) was able to bind RII alpha. Disruption of secondary structure by site-directed mutagenesis at selected residues within a putative acidic amphipathic helix located between residues 392 and 408 prevented RII binding. Immunological studies demonstrate that AKAP 79 is predominantly expressed in the cerebral cortex and is a component of fractions enriched for postsynaptic densities. AKAP antisera strongly cross-react with a 150-kDa protein in murine PSD believed to be AKAP 150. Co-localization of the type II PKA in purified PSD fractions was confirmed immunologically by detection of RII and enzymologically by measuring cAMP-stimulated phosphorylation of the heptapeptide substrate Kemptide. Approximately 30% of the PSD kinase activity was specifically inhibited by PKI 5-24 peptide, a highly specific inhibitor of PKA. We propose that AKAP 79 and AKAP 150 function to anchor the type II PKA to the PSD, presumably for a role in the regulation of postsynaptic events.  相似文献   

4.
The amino acid sequence of rat brain prostaglandin D synthetase (Urade, Y., Fujimoto, N., and Hayaishi, O. (1985) J. Biol. Chem. 260, 12410-12415) was determined by a combination of cDNA and protein sequencing. cDNA clones specific for this enzyme were isolated from a lambda gt11 rat brain cDNA expression library. Nucleotide sequence analyses of cloned cDNA inserts revealed that this enzyme consisted of a 564- or 549-base pair open reading frame coding for a 188- or 183-amino acid polypeptide with a Mr of 21,232 or 20,749 starting at the first or second ATG. About 60% of the deduced amino acid sequence was confirmed by partial amino acid sequencing of tryptic peptides of the purified enzyme. The recognition sequence for N-glycosylation was seen at two positions of amino acid residues 51-53 (-Asn-Ser-Ser-) and 78-80 (-Asn-Leu-Thr-) counted from the first Met. Both sites were considered to be glycosylated with carbohydrate chains of Mr 3,000, since two smaller proteins with Mr 23,000 and 20,000 were found during deglycosylation of the purified enzyme (Mr 26,000) with N-glycanase. The prostaglandin D synthetase activity was detected in fusion proteins obtained from lysogens with recombinants coding from 34 and 19 nucleotides upstream and 47 and 77 downstream from the first ATG, indicating that the glycosyl chain and about 20 amino acid residues of N terminus were not essential for the enzyme activity. The amino acid composition of the purified enzyme indicated that about 20 residues of hydrophobic amino acids of the N terminus are post-translationally deleted, probably as a signal peptide. These results, together with the immunocytochemical localization of this enzyme to rough-surfaced endoplasmic reticulum and other nuclear membrane of oligodendrocytes (Urade, Y., Fujimoto, N., Kaneko, T., Konishi, A., Mizuno, N., and Hayaishi, O. (1987) J. Biol. Chem. 262, 15132-15136) suggest that this enzyme is a membrane-associated protein.  相似文献   

5.
Based upon recent reports that the rat testis exhibits mRNAs for cAMP-dependent protein kinase (A-kinase) regulatory (R) subunits RI alpha, RI beta, RII alpha, and RII beta, this study was designed to identify R proteins present in extracts of germ cell-rich testis from adult and Sertoli cell-enriched, germ cell-poor testis from 14-15-day-old rats. Following separation by DEAE-cellulose, R subunits were identified by Mr: (a) upon labeling with 8-N3[32P]cAMP and 32P in an RII phosphorylation reaction and; (b) by Western blot analysis using R-specific antibodies on one- and two-dimensional gel electrophoresis. Elution of R subunits as catalytic (C) subunit-free dimers or in association with C subunits to form holoenzyme was determined by their sedimentation characteristics on sucrose gradient centrifugation in conjunction with their cAMP-stimulated activation characteristics on Eadie-Scatchard analysis. Soluble extracts of testes, from both adult and 14-15 day-old rats, showed the presence of a prominent type I holoenzyme containing RI alpha subunits (47 kDa, peak 1), a minor type II holoenzyme, containing RII beta subunits (52 kDa, peak 2), and a second, more abundant, type II holoenzyme peak containing predominantly RII alpha and, to a lesser extent RII beta subunits (peak 3). The 53 kDa RI beta protein predicted by mRNA studies was only tentatively identified by Western blot analysis. Testes extracts of 14-15-day-old, but not adult, rats exhibited high levels of C subunit-free RI alpha, a result not predicted by mRNA studies. This latter result may be attributable to direct RI alpha regulation or to indirect RII beta regulation at a time during testis development prior to germ cell maturation.  相似文献   

6.
The regulatory subunit of cAMP-dependent protein kinase designated RII beta (RII51) has previously been shown to be the product of a separate gene. This was accomplished by the molecular cloning of a partial cDNA clone estimated to lack 30-45 nucleotides of the 5' end of the coding region. We hereby report the isolation of a cDNA clone for RII beta from rat granulosa cells, extending 43 nucleotides further 5' compared with the previously published cDNA sequence, and from which the entire amino acid sequence (415 residues) of the rat RII beta protein can be deduced. A cAMP regulated mRNA of 3.2 kilobases (kb) for RII beta was detected by the isolated cDNA in rat Sertoli cells.  相似文献   

7.
We have shown previously that the regulatory subunit (RII) of a type II cyclic AMP (cAMP)-dependent protein kinase is tightly associated with mammalian sperm flagella (J. A. Horowitz et al. (1984) J. Biol. Chem. 259, 832-838; J. A. Horowitz et al. (1988) J. Biol. Chem. 263, 2098-2104). In the present study the flagellar RII was compared to other well-characterized RIIs using biochemical and immunological methods. Flagellar polypeptides were screened by immunoblot analysis with monoclonal antibodies directed against the RII alpha and RII beta isoforms. An RII beta monoclonal antibody failed to cross-react with any flagellar polypeptide. In contrast, mAB 622, an RII alpha/RII beta monoclonal antibody, cross-reacted with a 57,000 Da polypeptide. However, another RII alpha/RII beta monoclonal antibody interacted weakly with the flagellar RII, suggesting that the epitope for this antibody is modified in flagellar RII. Partial peptide mapping of 8-azido-[32P]cAMP-labeled RIIs revealed that although heart and testis generated similar fragmentation patterns, there were differences in the maps from flagellar RII. Two-dimensional sodium dodecyl sulfate-gel electrophoresis of 8-azido-[32P]cAMP-labeled RII from rat flagella and bovine heart showed that the former possessed a considerably more acidic isoelectric point. Partial proteolysis of the flagellar RII by either endogenous or exogenous proteases resulted in the cleavage of RII to a 40,000 Mr fragment. Complete release of this fragment from the flagellum was achieved if proteolysis was performed in the presence of thiol reducing agents. In their absence, approximately 50% of the fragment remained bound to the flagellum. The soluble proteolytic fragment was shown to be monomeric by native high-resolution gel-permeation chromatography and contained a functional cAMP-binding site(s).  相似文献   

8.
In mammalian brain, physiological signals carried by cyclic AMP (cAMP) seem to be targeted to effector sites via the tethering of cAMP-dependent protein kinase II beta (PKAII beta) to intracellular structures. Recently characterized A kinase anchor proteins (AKAPs) are probable mediators of the sequestration of PKAII beta because they contain a high-affinity binding site for the regulatory subunit (RII beta) of the kinase and a distinct intracellular targeting domain. To establish a cellular basis for this targeting mechanism, we have employed immunocytochemistry to 1) identify the types of neurons that are enriched in AKAPs, 2) determine the primary intracellular location of the anchor protein, and 3) demonstrate that an AKAP and RII beta are coenriched and colocalized in neurons that utilize the adenylate cyclase-cyclic AMP-dependent protein kinase (PKA) signaling pathway. Antibodies directed against rat brain AKAP 150 were used to elucidate the regional, cellular and intracellular distribution of a prototypic anchor protein in the CNS. AKAP 150 is abundant in Purkinje cells and in neurons of the olfactory bulb, basal ganglia, cerebral cortex, and other forebrain regions. In contrast, little AKAP 150 is detected in neurons of the thalamus, hypothalamus, midbrain, and hindbrain. A high proportion of total AKAP 150 is concentrated in primary branches of dendrites, where it is associated with microtubules. We also discovered that the patterns of accumulation and localization of RII beta (and PKAII beta) in brain are similar to those of AKAP 150. The results suggest that bifunctional AKAP 150 tethers PKAII beta to the dendritic cytoskeleton, thereby creating a discrete target site for the reception and propagation of signals carried by cAMP.  相似文献   

9.
A protein of apparent Mr = 15,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is the major plasma membrane substrate for cAMP-dependent protein kinase (PK-A) and protein kinase C (PK-C) in several different tissues. In the work described here, we purified, cloned, and sequenced the canine cardiac sarcolemmal "15-kDa protein." The amino terminus of the purified protein was not blocked, allowing determination of 50 consecutive residues by standard Edman degradation. Overlapping proteolytic phosphopeptides yielded 22 additional residues at the carboxyl terminus. Dideoxy sequencing of the full-length cDNA confirmed that the 15-kDa protein contains 72 amino acids, plus a 20-residue signal sequence. The mature protein has a calculated Mr = 8409. There is one hydrophobic membrane-spanning segment composed of residues 18-37. The acidic amino-terminal end (residues 1-17) of the protein is oriented extracellularly, whereas the basic carboxyl-terminal end (residues 38-72) projects into the cytoplasm. The positively charged carboxyl terminus contains the phosphorylation sites for PK-A and PK-C. In the transmembrane region, the 15-kDa protein exhibits 52% amino acid identity with the "gamma" subunit of Na,K-ATPase. High stringency Northern blot analysis revealed that 15-kDa mRNA is present in heart, skeletal muscle, smooth muscle, and liver but absent from brain and kidney. We propose the name "phospholemman" for the 15-kDa protein, which denotes the protein's location within the plasma membrane and its characteristic multisite phosphorylation.  相似文献   

10.
The Mr = 38,300 polypeptide of the purified recombinant rat DNA polymerase beta served as an excellent substrate for protein kinase C (PKC) in vitro but not for the catalytic subunit of cAMP-dependent protein kinase. The phosphorylation by PKC resulted in inactivation of DNA polymerase beta activity, and recovery was achieved by dephosphorylation with alkaline phosphatase. Since the phosphorylated DNA polymerase beta was retained with use of a single-stranded DNA-cellulose column, inactivation might occur at a site different from that for the DNA binding. Amino acid sequence analysis of the phosphopeptides revealed that the phosphorylated sites were 2 serine residues at positions 44 and 55 from the NH2 terminus, either or both of which might be involved in the catalytic activity of DNA polymerase beta. Thus, the inactivation of the DNA repair enzyme, DNA polymerase beta, by PKC may be an important process in the modification of DNA metabolism in the nucleus through signal transduction processes.  相似文献   

11.
Measles virus editing provides an additional cysteine-rich protein   总被引:28,自引:0,他引:28  
R Cattaneo  K Kaelin  K Baczko  M A Billeter 《Cell》1989,56(5):759-764
  相似文献   

12.
Although the major form of soluble cAMP-dependent protein kinase in bovine cerebral cortex can be classified as a type II kinase, the regulatory subunit (RII) can be distinguished from RII found in other tissues such as heart. Heart and brain RII were distinguished qualitatively by autophosphorylation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The mobility of dephosphorylated heart RII shifted from an apparent Mr of 55,000 to 57,000 following autophosphorylation. In contrast, when RII purified from brain was autophosphorylated with [gamma-32P]ATP, two radiolabeled bands were visualized, a minor band (less than or equal to 20%) which migrated with an Mr of 57,000 similar to the heart protein and a band with Mr = 55,000 which did not shift its mobility in response to autophosphorylation. Brain RII was further distinguished from heart RII on the basis of cAMP binding. Millipore filtration and equilibrium dialysis indicated that 2 mol of cAMP bound/mol of RII in contrast to 4 mol/mol with heart RII. Immunological differences were also apparent. Radioimmunoassays using monoclonal antibodies to RII showed that the brain protein had less than 4% of the cross-reactivity of heart RII. Both immunoblotting and immunoprecipitation using monoclonal as well as serum antibodies established that the cross-reactivity in phosphorylated brain RII was associated exclusively with the 57,000 component that behaved like heart RII. The lack of cross-reactivity of neural RII with two different monoclonal antibodies targeted the hinge region of RII as an area where structural differences might be anticipated, and comparative sequence analysis of this region definitively established that the major form of RII in brain is a unique gene product from the RII expressed in heart.  相似文献   

13.
The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate [HPI])-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1,036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and Mr estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%) of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.  相似文献   

14.
In Escherichia coli, interactions between the replication initiation protein DnaA, the beta subunit of DNA polymerase III (the sliding clamp protein), and Hda, the recently identified DnaA-related protein, are required to convert the active ATP-bound form of DnaA to an inactive ADP-bound form through the accelerated hydrolysis of ATP. This rapid hydrolysis of ATP is proposed to be the main mechanism that blocks multiple initiations during cell cycle and acts as a molecular switch from initiation to replication. However, the biochemical mechanism for this crucial step in DNA synthesis has not been resolved. Using purified Hda and beta proteins in a plate binding assay and Ni-nitrilotriacetic acid pulldown analysis, we show for the first time that Hda directly interacts with beta in vitro. A new beta-binding motif, a hexapeptide with the consensus sequence QL[SP]LPL, related to the previously identified beta-binding pentapeptide motif (QL[SD]LF) was found in the amino terminus of the Hda protein. Mutants of Hda with amino acid changes in the hexapeptide motif are severely defective in their ability to bind beta. A 10-amino-acid peptide containing the E. coli Hda beta-binding motif was shown to compete with Hda for binding to beta in an Hda-beta interaction assay. These results establish that the interaction of Hda with beta is mediated through the hexapeptide sequence. We propose that this interaction may be crucial to the events that lead to the inactivation of DnaA and the prevention of excess initiation of rounds of replication.  相似文献   

15.
Immunocytochemical evidence of an association between the regulatory subunit RII of the cAMP-dependent protein kinase (cAMP-PK) and the Golgi apparatus in several cell types has been reported. In order to identify endogenous Golgi proteins binding RII, a fraction enriched in Golgi vesicles was isolated from human lymphoblasts. Only the RII beta isoform was detected in the Golgi-rich fraction, although RII alpha has also been found to be present in these cells. A 85 kDa RII-binding protein was identified in Golgi vesicles using a [32P]RII overlay of Western blots. The existence of an endogenous RII beta-p85 complex in isolated Golgi vesicles was demonstrated by two independent means: (i) co-immunoprecipitation of both proteins under non-denaturing conditions with an antibody against RII beta and (ii) co-purification of RII beta-p85 complexes on a cAMP-analogue affinity column. p85 was phosphorylated by both endogenous and purified catalytic subunits of cAMP-pKII. Extraction experiments and protease protection experiments indicated that p85 is an integral membrane protein although it partitioned atypically during Triton X-114 phase separation. We propose that p85 anchors RII beta to the Golgi apparatus of human lymphoblasts and thereby defines the Golgi substrate targets most accessible to phosphorylation by C subunit. This mechanism may be relevant to the regulation of processes involving the Golgi apparatus itself, such as membrane traffic and secretion, but also relevant to nearby nuclear events dependent on C subunit.  相似文献   

16.
An obstacle to the study of protein phosphorylation in mammalian spermatozoa has been the inability to incorporate sufficient amounts of 32Pi into cellular adenosine triphosphate (ATP) (Babcock et al., 1975). We report conditions under which 32Pi is effectively incorporated into the ATP of intact bovine spermatozoa. In the presence of a bicarbonate-buffered medium containing glucose, spermatozoa incorporated 32P into intracellular ATP in a time-dependent manner; after 2 h of incubation, the specific activity of [gamma-32P]ATP (2.3 X 10(4) cpm/nmol ATP) was estimated to be 50-65% of the specific activity of the intracellular phosphate pool. In the absence of glucose or other added substrates, the specific activity of [gamma-32P]ATP was 10-25% that of the specific activity observed in the presence of glucose. Washed spermatozoa incubated in carrier-free 32Pi for 2 h at 37 degrees C, and solubilized in a solution containing final concentrations of 6.8 M urea, 6% NP4O, and 5% beta-mercaptoethanol contained in excess of 40 32Pi-labeled proteins as assessed by two-dimensional polyacrylamide gel electrophoresis. Major phosphoproteins had approximate molecular weights of 93,000, 40,000, and 22,000. A different two-dimensional gel pattern was observed when cells were extracted with a solution containing 38.5 mM 2[N-cyclohexylamino] ethanesulfonic acid (CHES), pH 9.5/1.5% sodium dodecyl sulphate (SDS) at 100 degrees C. In contrast to the urea/Nonidet P-40 (NP40)/beta-mercaptoethanol extract, a 56,000 Mr phosphoprotein represented a major component while the 40,000 Mr and several of the 22,000 Mr polypeptides were markedly reduced in radioactive intensity. The 56,000 Mr species present in the CHES/SDS extract comigrated with the purified, phosphorylated regulatory subunit (RII) of cyclic adenosine 3',5'-monophosphate-dependent protein kinase from bovine heart. Antibodies to RII immunoprecipitated a 56,000 Mr, 32P-labeled polypeptide from the CHES/SDS extract that comigrated with purified, [32P] RII after two-dimensional electrophoresis. RII, then, appears to represent one of the endogenous phosphoproteins of intact bovine epididymal spermatozoa.  相似文献   

17.
Tyr(P)-containing proteins were purified from extracts of insulin-treated rat hepatoma cells (H4-II-E-C3) by antiphosphotyrosine immunoaffinity chromatography. Two major insulin-stimulated, Tyr(P) proteins were recovered: an Mr 95,000 protein (identified as the insulin receptor beta subunit by its immunoprecipitation by a patient-derived anti-insulin receptor serum and several anti-insulin receptor (peptide) antisera) and an Mr 180,000 protein (which was unreactive with all anti-insulin receptor antibodies). After purification and tryptic digestion of the Mr 95,000 protein, tryptic peptides containing Tyr(P) were purified by sequential antiphosphotyrosine immunoaffinity, reversed-phase, anion-exchange chromatography. The partial amino acid sequence obtained by gas- and solid-phase Edman degradation was compared to the amino acid sequence of the intracellular extension of the rat insulin receptor deduced from the genomic sequence. Approximately 80% of all beta subunit [32P]Tyr(P) resides on two tryptic peptides: 50-60% of [32P]Tyr(P) is found on the tryptic peptide Asp-Ile-Tyr-Glu-Thr-Asp-Tyr-Tyr-Arg from the tyrosine kinase domain, which is recovered mainly as the double phosphorylated species (predominantly in the form with Tyr(P) at residues 3 and 7 from the amino terminus; the remainder with Tyr(P) at residues 3 and 8), with 10-15% as the triple phosphorylated species. A second tryptic peptide is located near the carboxyl terminus, contains 2 tyrosines, and has the sequence, Thr-Tyr-Asp-Glu-His-Ile-Pro-Tyr-Thr-; this contains 20-30% of beta subunit [32P]Tyr(P) and is identified primarily in a double phosphorylated form. Approximately 10% of beta subunit [32P]Tyr(P) resides on an unidentified tryptic peptide of Mr 4,000-5,000. The insulin-stimulated tyrosine phosphorylation of the insulin receptor in intact rat hepatoma cells thus involves at least 6 of the 13 tyrosine residues located on the beta subunit intracellular extension. These tyrosines are clustered in several domains in a distribution virtually identical to that previously found for partially purified human insulin receptor autophosphorylated in vitro in the presence of insulin. This multisite regulatory tyrosine phosphorylation is the initial intracellular event in insulin action.  相似文献   

18.
Structure of a precursor to human pancreatic polypeptide   总被引:3,自引:0,他引:3  
We have isolated mRNA from a human pancreatic islet cell tumor and have identified among the cell-free translation products a precursor of pancreatic polypeptide with an approximate Mr = 11,000. Recombinant DNA molecules encoding this precursor were selected from a cDNA library prepared from the islet tumor mRNA. From the nucleotide sequences of cDNAs encoding the precursor, we have deduced the complete amino acid sequence of pre-propancreatic polypeptide. These sequences encode a protein consisting of 95 amino acid residues with a Mr = 10,432. The sequence of human pancreatic polypeptide occurs in the middle of the precursor and is flanked at its carboxyl terminus by a 27-amino acid sequence which is similar to a peptide previously isolated from canine pancreatic islets. At the amino terminus of the precursor is a probable leader sequence which is rich in hydrophobic residues. A smaller pancreatic polypeptide-related protein was generated in cell-free translations of mRNA supplemented with microsomal membranes. Sequential Edman degradations of this smaller peptide indicate that the sequence of pancreatic polypeptide is located at the amino terminus of the prohormone.  相似文献   

19.
Regulatory (R) subunits and their association with catalytic subunits to form cAMP-dependent protein kinase holoenzymes were investigated in corpora lutea of pregnant rats. Following separation by DEAE-cellulose chromatography, R subunits were identified by labeling with 8-N3[32P]cAMP and autophosphorylation on one and two-dimensional gel electrophoresis and by reactivity with antisera. DEAE-cellulose elution of R subunits with catalytic subunits as holoenzymes or without catalytic subunits was determined by sedimentation characteristics on sucrose density gradient centrifugation and by cAMP-stimulated kinase activation characteristics on Eadie-Scatchard analysis. We identified the presence of a type I holoenzyme containing RI alpha (Mr 47,000) subunits, a prominent type II holoenzyme containing RII beta (Mr 52,000) subunits, and a second more acidic type II holoenzyme peak containing both RII beta and RII alpha (Mr 54,000) subunits. However, the majority of total R subunit activity was associated with a catalytic subunit-free peak of RI alpha protein which on elution from DEAE-cellulose was associated with cAMP. This report establishes the more basic elution position from DEAE-cellulose of the prominent rat luteal RII beta holoenzyme in very close proximity to free RI alpha and presents one of the few reports of a normal tissue containing a large percentage of catalytic subunit-free RI alpha.  相似文献   

20.
In trematodes, vitelline precursor proteins are required for eggshell formation. A cDNA clone of Clonorchis sinensis (CsVpB1) was selected from an EST pool, encoding a polypeptide of 245 amino acids. The CsVpB1 polypeptide demonstrated homology with vitelline precursor proteins from trematodes with high sequential identities. In a phylogenic tree, CsVpB1 clustered with trematode VpB proteins. The CsVpB1 polypeptide was found to be rich in tyrosine residues, including putative predihydroxyphenyl alanine (DOPA) residues, involved in cross-linking of the precursor proteins. Mouse immune sera were raised against a recombinant CsVpB1 protein. In adult C. sinensis, CsVpB1 protein was exclusively localized in vitelline follicles. Based on these results, the CsVpB1 cDNA is believed to encode a VpB of C. sinensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号