首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J L Cook  D L May  A M Lewis  Jr    T A Walker 《Journal of virology》1987,61(11):3510-3520
Rodent cells immortalized by the E1A gene of nononcogenic adenoviruses are susceptible to lysis by natural killer (NK) cells and activated macrophages. This cytolysis-susceptible phenotype may contribute to the rejection of adenovirus-transformed cells by immunocompetent animals. Such increased cytolytic susceptibility has also been observed with infected rodent cells. This infection model provided a means to study the role of E1A gene products in induction of cytolytic susceptibility without cell selection during transformation. Deletion mutations outside of the E1A gene had no effect on adenovirus type 2 (Ad2) or Ad5 induction of cytolytic susceptibility in infected hamster cells, while E1A-minus mutant viruses could not induce this phenotype. E1A mutant viruses that induced expression of either E1A 12S or 13S mRNA in infected cells were competent to induce cytolytic susceptibility. Furthermore, there was a correlation between the accumulation of E1A gene products in Ad5-infected cells and the level of susceptibility of such target cells to lysis by NK cells. The results of coinfection studies indicated that the E1A gene products of highly oncogenic Ad12 could not complement the lack of induction of cytolytic susceptibility by E1A-minus Ad5 virus in infected cells and also could not block induction of this infected-cell phenotype by Ad5. These data suggest that expression of the E1A gene of nononcogenic adenoviruses may cause the elimination of infected cells by the immunologically nonspecific host inflammatory cell response prior to cellular transformation. The lack of induction of this cytolysis-susceptible phenotype by Ad12 E1A may result in an increased persistence of Ad12-infected cells in vivo and may lead to an increased Ad12-transformed cell burden for the host.  相似文献   

2.
The E1A oncogene of adenovirus serotypes 2 and 5 induces susceptibility to the cytolytic effects of natural killer lymphocytes and activated macrophages when expressed in infected and transformed mammalian cells (cytolysis-susceptible phenotype). E1A and the oncogenes v-myc, long-terminal-repeat-promoted c-myc, and activated c-ras share the ability to immortalize transfected low-passage rodent cells. The cytolytic phenotypes of well-characterized rodent cell lines immortalized by these three oncogenes were defined. In contrast to target cells expressing the intact E1A gene, myc- and ras-expressing, immortalized primary transfectants were resistant to lysis by both types of killer cell populations. The same patterns of susceptibility (E1A) and resistance (myc and ras) to cytolysis were observed in oncogene-transfected continuous rat (REF52) and mouse (NIH 3T3) cell lines, indicating that differences in the cytolytic phenotypes associated with expression of these oncogenes are not due to cell selection during immortalization. The results suggest that the E1A oncogene may possess a functional domain that is different from those of other oncogenes, such as myc and ras, and that the activity linked to this postulated domain is dissociable from the process of immortalization.  相似文献   

3.
J M Routes  S Ryan 《Journal of virology》1995,69(12):7639-7647
The reasons for the dissimilar oncogenicities of human adenoviruses and human papillomaviruses (HPV) in humans are unknown but may relate to differences in the capacities of the E1A and E7 proteins to target cells for rejection by the host natural killer (NK) cell response. As one test of this hypothesis, we compared the abilities of E1A- and E7-expressing human fibroblastic or keratinocyte-derived human cells to be selectively killed by either unstimulated or interferon (IFN)-activated NK cells. Cells expressing the E1A oncoprotein were selectively killed by unstimulated NK cells, while the same parental cells but expressing the HPV type 16 (HPV-16) or HPV-18 E7 oncoprotein were resistant to NK cell lysis. The ability of IFN-activated NK cells to selectively kill virally transformed cells depends on IFN's ability to induce resistance to NK cell lysis in normal (i.e., non-viral oncogene-expressing) but not virally transformed cells. E1A blocked IFN's induction of cytolytic resistance, resulting in the selective lysis of adenovirus-transformed cells by IFN-activated NK cells. The extent of IFN-induced NK cell killing of E1A-expressing cells was proportional to the level of E1A expression and correlated with the ability of E1A to block IFN-stimulated gene expression in target cells. In contrast, E7 blocked neither IFN-stimulated gene expression nor IFN's induction of cytolytic resistance, thereby precluding the selective lysis of HPV-transformed cells by IFN-activated NK cells. In conclusion, E1A expression marks cells for destruction by the host NK cell response, whereas the E7 oncoprotein lacks this activity.  相似文献   

4.
NIH 3T3 tertiary transfectants containing the N-ras or c-Ha-ras oncogenes derived from human tumors were tested for susceptibility to lymphokine-activated killer (LAK) cell and natural killer (NK) cell lysis. N-ras tertiary transfectants contained a human acute lymphocytic leukemia-derived N-ras oncogene. C-Ha-ras transfectants contained either the position 61-activated form of the oncogene (45.342, 45.322, and 45.3B2) or the position 12-activated form (144-162). In 4 hr 51Cr release assays, seven of seven in vivo grown human oncogene transfected NIH 3T3 fibroblasts were lysed by murine LAK effectors, whereas six of seven were lysed by human LAK effectors. There was no difference in susceptibility to lysis between cells transfected with the N-ras oncogene, the position 61 activated c-Ha-ras oncogene, or the position 12 activated c-Ha-ras oncogene. Cultured NIH 3T3 fibroblasts, as well as in vitro and in vivo grown NIH 3T3 tertiary transfectants were resistant to lysis by murine NK effectors and were relatively resistant (4/6 were not lysed) to lysis by human NK effectors. We conclude that human oncogene-transfected tumors are susceptible to lysis by both murine and human LAK cells while being relatively resistant to lysis by murine and human NK cells. Different oncogenes or the same oncogene activated by different point mutations do not specifically determine susceptibility to lysis by LAK or NK. Also the presence of an activated oncogene does not appear to be sufficient for inducing susceptibility to these cytotoxic lymphocyte populations.  相似文献   

5.
The resistance of target cells to the cytolytic action of lymphotoxin (LT) and recombinant tumor necrosis factor (rTNF) has been investigated by using clonally derived cell lines with defined gap junction-mediated, intercellular communication properties. Gap junction-competent Chinese hamster ovary cells are normally insensitive to the action of LT/TNF. However, treatment with 12-o-tetradecanoylphorbol-13-acetate, which promotes the loss of gap junctions, or culturing at low cell density to reduce intercellular contacts, significantly increased their sensitivity to LT/TNF. The LT/TNF-sensitive murine CL-1D and L929 cell lines, which in normal culture conditions are unable to form gap junctions, were not changed in their susceptibility to LT/TNF after treatment with phorbol ester or low culture density. However, the formation of gap junctions by CL-1D can be promoted by treatment with 8-bromo-cyclic adenosine monophosphate (1 mM), and this treatment completely suppressed the ability of LT and rTNF to kill CL-1D. Additionally, the LA25-normal rat kidney cell line, which is infected with a temperature-sensitive mutant of Rous sarcoma virus (LA25), is gap junction-competent and resistant to the effects of LT at the restrictive temperature (39 degrees C). However, when shifted to the permissive temperature (33 degrees C), LA25-normal rat kidney cells express the pp60v-src viral gene product, lose their ability to form gap junctions, and become sensitive to the lytic activity of LT. The results demonstrate that the expression of the retroviral pp60v-src, a tyrosine protein kinase, is sufficient to render cells susceptible to the lytic effects of LT and rTNF. Collectively, these experiments demonstrate a strong correlation between the resistance of target cells to the action of LT/TNF and their ability to cooperate metabolically through gap junctions. The results do not completely exclude the possibility that other mechanisms, such as LT receptor modulation, are also occurring under these experimental conditions. These data also suggest that a possible physiologic function of the stable cytotoxic lymphokines is to induce cytolysis/cytostasis of cells that have lost gap junctional contact, such as those in the process of mitosis or metastasis that have separated from the main tissue mass.  相似文献   

6.
NK cells mediate their cytotoxicity against tumor cells through abroad array of cytotoxic and cytostatic proteins. We investigated whether specific proteins could also be identified that contributed to NK cell-mediated antiviral immunity. Human CD16+/CD3- NK cells were obtained by using FACS and subsequently cloned by using limiting dilution. These NK cell lines, which were cytotoxic against NK-sensitive tumor targets and virally infected cells, also generated supernatants that selectively killed vesicular stomatitis virus-infected cells while sparing noninfected cells. This soluble antiviral activity was completely neutralized by antibodies specific for TNF and lymphotoxin. Purified human rTNF also duplicated this specific cytotoxicity against vesicular stomatitis virus-infected cells, as well as against CMV-, Theiler's murine encephalomyelitis virus-, and HSV-infected cells. The degree of cytotoxicity varied for the different viruses and depended on the cell type infected. These results suggest that NK cells can mediate selective and direct cytotoxicity against virally infected cells by the secretion of TNF and lymphotoxin.  相似文献   

7.
8.
The effect of recombinant tumor necrosis factor-alpha (rTNF alpha) on human natural killer (NK) function was examined. Lysis of both the NK-sensitive K562 erythroleukemia line and the relatively insensitive renal carcinoma line Cur by nonadherent peripheral blood lymphocytes was significantly enhanced as a result of an 18-hr preincubation with either rTNF alpha or recombinant interleukin 2 (rIL 2). When cells were preincubated with rTNF alpha and low doses of rIL 2 (1 to 10 U/ml), marked additional augmentation of lysis of both targets was noted which was greater than that caused by either cytokine alone. Similar results were observed when responses of CD16+ large granular lymphocytes selected with the fluorescence-activated cell sorter after staining with the NK-specific monoclonal antibody Leu-11 were examined, indicating that the action of the cytokines was directly on the cytotoxic cells. Augmentation of tumor cell lysis could not be ascribed to a cytolytic activity of rTNF alpha on the targets, because no combination of rIL 2, rTNF alpha, or interferon-gamma caused lysis of K562 or Cur. By flow cytometric analysis, it was found that expression of IL 2 receptors was induced on purified CD16+ large granular lymphocytes by rTNF alpha alone and to an even greater degree by the combination of rTNF alpha and rIL 2. Additional analysis of the expression of surface antigens and blocking studies with monoclonal antibodies showed that enhanced tumor cell lysis was not caused by the augmentation of leukocyte function-associated antigen-1-mediated effector/target interactions. These data indicate that rTNF alpha alone, or in combination with rIL 2, directly augments NK cytotoxic activity.  相似文献   

9.
The transformation of a potentially neoplastic cell into an autonomous highly malignant and metastatic tumor cell involves a multifactorial cascade of events. This will eventually lead not only to the emergence of a tumor cell with an unlimited potential of replication, but more important will contribute to its ability to ignore and evade homeostatic immune and nonimmune regulatory mechanisms. Specifically, those mechanisms which may restrict and direct its growth, dissemination, patterns of differentiation and interaction with the cellular and humoral factors comprising its environment. In the present studies we have investigated the contribution of three major factors which may be the cause or result of alterations at the level of the cell membrane: MHC encoded antigen expression, susceptibility to the cytolytic activity of NK cells and enhanced expression of the c-K-ras proto-oncogene, as to their development of the metastatic capacity of a malignant cell. To address these questions we used metastatic (IE7) and nonmetastatic (IC9) variants of the murine 3-methylcholanthrene-induced T-10 fibrosarcoma. Using this system, the following major conceptually important observations were made: (A) The restoration by transfection of the expression of membrane associated H-2K encoded glycoproteins abrogates the metastatic capacity of the highly metastatic tumor cell clone, IE7, irrespective of the degree of susceptibility to NK or c-K-ras oncogene expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
NK cell activation is negatively regulated by the expression of target cell MHC class I molecules. We show that this relationship is nonlinear due to an NK cell activation/inhibition threshold. Ewing's sarcoma family tumor cell monolayers, which were highly susceptible to NK cells in vitro, developed a highly resistant phenotype when cultured as three-dimensional multicellular tumor spheroid structures. This suggested that tumor architecture is likely to influence the susceptibility to NK cells in vivo. Resistance of the multicellular tumor spheroid was associated with the increased expression of MHC class I molecules and greatly reduced NK cell activation, implying that a threshold of NK cell activation/inhibition had been crossed. Reducing MHC class I expression on Ewing's sarcoma family tumor monolayers did not alter their susceptibility to NK cells, whereas increased expression of MHC class I rendered them resistant and allowed the threshold point to be identified. This threshold, as defined by MHC class I expression, was predictive of the number of NK-resistant target cells within a population. A threshold permits modest changes in the target cell surface phenotype to profoundly alter the susceptibility to NK cells. Whereas this allows for the efficient detection of target cells, it also provides a route for pathogens and tumors to evade NK cell attack.  相似文献   

11.
Cells from the line 1 murine carcinoma express little if any H-2d when grown in normal medium. These cells are susceptible to splenic cell populations with NK activity, stimulated by prior injection of poly I:C, but are not lysed by NK-deficient splenocytes from homozygous beige mice treated with anti-asialo GM1. Incubation of line 1 cells in medium containing DMSO leads to a dramatic stimulation of H-2d expression but no change in lytic susceptibility to splenic NK cells. Transfection of H-2Dp into line 1 leads to a constitutive and DMSO-inducible expression of H-2Dp at functionally significant levels, but this expression appears to have no influence on NK cytolytic susceptibility.  相似文献   

12.
Human adenovirus types 2 and 5 (Ad2/5) cause persistent infections in man. Ad2/5 infection of rodent cells induces increased susceptibility to NK lymphocyte-mediated lysis that is dependent on target cell expression of Ad2/5 E1A gene products. In contrast to infected rodent cells, Ad2/5 infection of human fibroblasts and epithelial cells does not result in increased susceptibility to either human or rodent NK cell-mediated killing, despite high levels of E1A protein expression. This functional inactivity of E1A gene products in Ad-infected human cells may contribute to adenoviral persistence by rendering the NK cell response to Ad-infected cells ineffective.  相似文献   

13.
Hyperthermia, which is used as an adjunctive therapy for cancer, is known to modulate the activity of natural killer (NK) cells in vitro, but its effect in vivo is unclear. In the present study, we used a whole body hyperthermia (WBH) device heated by infrared rays to evaluate the effect of WBH on mice models. We demonstrate here that wild type C57BL/6J mice exposed to 42 degrees C for 60min had reduced NK cell cytolytic activity against YAC-1 target cells as determined by cytolytic assay. This result was confirmed using Rag-2 knockout mice, which possess functional NK but not cytolytic T or NK-T cells. Moreover, WBH decreased the mRNA expression of perforin and granzyme B in spleens of mice. But the expression of TNF cytokines (Fas ligand and TRAIL) was unchanged. These data suggest that the suppression of NK cell activity induced by WBH could be mediated through the perforin/granzyme pathway.  相似文献   

14.
Recent evidence has demonstrated that the lytic function of natural killer cells might be regulated by potential target cells through the target cells' expression of cell surface components that are able to inhibit the lytic process. Specifically, it has been shown in many target cell systems that the expression of class I MHC proteins by target cells is inversely proportional to their susceptibility to lysis by NK cells. It has been suggested, therefore, that MHC proteins may act as important negative regulatory elements in the ongoing control of NK cell function. Herein, we examined two closely related murine lymphoma cells (ASL1 and ASL1w), both in terms of their susceptibility to lysis by NK cells as well as their expression of both H-2K and H-2D class I MHC proteins. The results of these studies showed that whereas ASL1 and ASL1w cells differed greatly in their susceptibility to NK cell lysis (ASL1 was much more NK resistant than ASL1w), both expressed high levels of H-2K and D proteins. In contrast to what might have been predicted base on reports from other target cell systems, the more NK susceptible ASL1w cells expressed somewhat higher levels of H-2K Ag than did ASL1 cells. These results indicate that expression of H-2 class I proteins by target cells, in and of itself, is not sufficient to inhibit the lytic activity of murine NK cells.  相似文献   

15.
The present study was undertaken to evaluate the possible contribution of other cytokines to the lytic activity of NKCF-containing supernatants. We compared some of the functional properties of human NKCF and purified recombinant human rLT and rTNF. It was found that the target cell specificity of rLT was quite different from NKCF in that rLT was neither species specific nor NK specific. Furthermore, antibodies against rLT did not affect the lytic activity of NKCF. These results demonstrate that LT does not significantly contribute to the lytic activity mediated by NKCF. The target specificity of rTNF was found to be related to that of NKCF with the exception of one NK-resistant cell line that was lysed by rTNF in a 20-hr 51Cr-release assay. However, rTNF was not toxic to any of the target cells tested as assessed by trypan blue exclusion in a 20-hr assay unless the targets were labeled with 51Cr. In contrast, NKCF did kill target cells as detected by trypan blue exclusion that were not labeled with 51Cr. Further analysis of this mechanistic difference in the lytic activity of rTNF and NKCF revealed that rTNF in combination with either cycloheximide or mitomycin C but not IFN-gamma could lyse unlabeled U937 target cells. In addition, pretreatment of U937 target cells with nonradioactive Na2CrO4 at concentrations equivalent to that used to 51Cr-labeled cells resulted in their susceptibility to lysis by rTNF as assessed by trypan blue exclusion. These findings suggest that lysis of several susceptible target cells in 20 hr by rTNF requires the presence of additional agents that may be sublethally toxic and/or inhibitory to macromolecular synthesis. Antibody inhibition studies revealed that anti-TNF mediated from partial to complete inhibition of lysis of U937 by unfractionated supernatants containing NKCF. However, fractionation of such supernatants on chromatofocusing columns yielded two distinct peaks of activity eluting in the pH range of 5 to 6 and 7 to 8. Anti-TNF could inhibit the acidic form of NKCF but not the neutral form. It is concluded that NKCF activity is mediated in part by TNF or an antigenically related molecule as well as some other distinct factor(s). The lack of consistent inhibition of NK CMC by anti-TNF suggests that TNF alone is not sufficient to mediate NK activity, or else it is inaccessible to the added antibody.  相似文献   

16.
Relationship between the levels of MHC class 1 antigen expressed on tumour cells and their susceptibility to allogenic and xenogenic NK cells was investigated. Mouse and human natural killer-resistance inducing factor (NK-RIF) preparations were used for augmenting/inducing MHC 1 antigen expression on murine YAC and human K562 tumour cells, respectively YAC cells with augmented MHC I antigen expression became relatively resistant to lysis by murine NK cells but not to rat NK cells. Similarly, induction of MHC I antigens on K562 cells reduced their susceptibility to human NK cells but not to monkey NK cells. These results indicate that the inverse correlation of MHC I antigen expression and NK susceptibility does not hold true for xenogenic pairs of NK effector and target cells.  相似文献   

17.
Human papillomaviruses (HPV), and in particular HPV type 16, are etiologic agents in the development of cervical cancer, which is the second most common form of cancer in women worldwide. Mammalian cells are susceptible to transformation in vitro by the E6 and E7 oncogenes derived from the HPV-16 genome. NIH-3T3 cells transfected with the HPV-16 E7 oncogene were found to exhibit cytolytic susceptibility to murine-activated macrophages. In comparison, E6 oncogene-expressing cells were not susceptible to lysis by activated macrophages. The E7 oncoprotein is multifunctional, being capable of complexing with the retinoblastoma tumor suppressor gene (anti-oncogene) product, stimulating DNA synthesis, and causing cell transformation in vitro. Macrophage killing assays performed on cell lines expressing E7 mutants revealed that the ability to complex the retinoblastoma tumor suppressor gene product and stimulate DNA synthesis did not induce susceptibility to activated macrophages, whereas the ability of E7 to cause transformation was required to induce susceptibility to activated macrophages. These data suggest that cell transformation is a more important prerequisite for inducing susceptibility to activated macrophages than is the loss of tumor suppressor gene function. This study also provides an initial link between HPV-16 oncogene expression and the ability of activated macrophages to selectively recognize and destroy HPV-16-associated neoplastic cells.  相似文献   

18.
The susceptibility of mouse cells expressing full-length or truncated transforming protein (T antigen) of simian virus 40 (SV40) to lysis by murine natural killer (NK) cells was assessed. For these studies, C57BL/6 mouse embryo fibroblasts (B6/MEF) were transformed by transfection with SV40 DNA encoding the entire T antigen. The transformed cell lines were tested for susceptibility to lysis by nonimmune CBA splenocytes as a source of NK cells and to lysis by C57BL/6, SV40-specific cytolytic T cells (CTL). It was found that 13 of 15 clonally derived, SV40-transformed H-2b cell lines were susceptible to lysis by NK cells. However, there was some variation in their susceptibility to lysis by NK cells. There was no correlation between susceptibility to lysis by SV40-specific CTL and to lysis by NK cells. Cells transfected with a plasmid which encodes only the N-terminal half of the SV40 T antigen were consistently less susceptible to lysis by NK cells, suggesting that expression of only the N-terminus of the T antigen was insufficient for optimal susceptibility to lysis by NK cells. Primary mouse embryo fibroblasts transformed by human adenovirus type 5 E1 region DNA were also found to be susceptible to NK cell-mediated lysis. Lysis of SV40-transformed cells by nonimmune CBA splenocytes was mediated by NK cells because: lysis was augmented when the effector cells were treated with interferon before assay; and lysis was abrogated when the effector cells were obtained from mice that had been depleted of NK activity by treatment with antiserum against the asialo GM1 surface marker. These results indicate that primary mouse cells which are transformed by SV40 and which express the native T antigen are susceptible to lysis by mouse NK cells. Conversely, cells transformed by a plasmid encoding only the N-terminal half of the T antigen express reduced susceptibility to lysis by NK cells.  相似文献   

19.
TNF-alpha has been shown to be associated with macrophage cell membranes in such a way as to retain cytolytic activity despite fixation of the macrophage effector cells with paraformaldehyde. In this paper we report that, similar to cytotoxic macrophages, natural cytotoxic (NC) cells also use cell-associated TNF to lyse sensitive target cells. However, in contrast to fixed cytotoxic macrophages, NC cells do not retain cytolytic activity after fixation with paraformaldehyde. Additionally, the cytolytic activity of paraformaldehyde-fixed NC cells is not increased by incubation with LPS or by incubation with rTNF before fixation. Western blot analysis indicates that, unlike macrophages, NC cells use a smaller (17 kDa) constitutively active form of TNF. These results indicate that, although both macrophages and NC cells use effector cell-associated TNF to mediate lysis of sensitive targets, the way in which TNF is associated with these two types of effector cells must be different.  相似文献   

20.
A reciprocal activating interaction between NK cells and dendritic cells (DC) has been suggested to play a role in the functional regulation of these cells in immunity, but it has been studied only using in vitro generated bone marrow- or monocyte-derived DC. We report that human peripheral blood plasmacytoid DC (pDC) and myeloid DC are necessary to induce NK cell function depending on the type of microbial stimulus. pDC and myeloid DC are required for strongly increased NK cytolytic activity and CD69 expression, in response to inactivated influenza virus or CpG-containing oligonucleotides and poly(I:C), respectively. Secreted type I IFN is required and sufficient for the augmentation of NK cell cytolytic activity in the coculture with pDC or myeloid DC, whereas CD69 expression is dependent on both type I IFN and TNF. In addition, in response to poly(I:C), myeloid DC induce NK cells to produce IFN-gamma through a mechanism dependent on both IL-12 secretion and cell contact between NK cells and myeloid DC, but independent of type I IFN. IL-2-activated NK cells have little to no cytolytic activity for immature myeloid DC and pDC, but are able to induce maturation of these cells. Moreover, IL-2-activated NK cells induce, in the presence of a suboptimal concentration of CpG-containing oligonucleotides, a strong IFN-alpha and TNF production. These data suggest that the reciprocal functional interaction between NK cells and either pDC or myeloid DC may play an important physiological role in the regulation of both innate resistance and adaptive immunity to infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号