首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scents of survival: Subtle defense strategies in plants Plants are master chemists who synthesize an arsenal of compounds which efficiently defend against herbivore attack. In addition to chemicals which directly affect herbivores, attacked plants release characteristic bouquets of low molecular weight volatile compounds, mostly terpenes and fatty acid derivatives, into their environment. These volatiles serve as signals which can attract predators and parasitoids to attack herbivores, thus indirectly defending the plant. Volatiles may also be perceived by remote parts of the same plant, which can then prepare to defend themselves against imminent attack, and thus react more quickly when attacked. These natural phenomena suggest alternative strategies for agricultural pest management.  相似文献   

2.
Ribosomal gene sequences were obtained from bryozoans in the genus Bugula and their bacterial symbionts; analyses of host and symbiont phylogenetic trees did not support a history of strict cospeciation. Symbiont-derived compounds known to defend host larvae from predation were only detected in two out of four symbiotic Bugula species.  相似文献   

3.
植物源昆虫拒食活性物质的研究和应用   总被引:12,自引:0,他引:12  
植物在与昆虫协调进化过程中形成了许多具有防御功能的次生代谢物质。作者对近年来植物源昆虫拒食活性物质的研究和应用进行了综述,其结构类型主要涉及萜类、生物碱类、酚类等,讨论了制约植物源昆虫拒食剂发展的因素并展望了植物源昆虫拒食剂在未来害虫综合治理中的作用。  相似文献   

4.
海绵及其共附生微生物的活性物质与化学防御   总被引:7,自引:0,他引:7  
海绵及其共附生微生物具有多种化学防御途径,具体表现在能够抵御潜在病原微生物、抗鱼类捕食、阻止污浊生物和降解表面活性剂等方面,这可能与海绵及其共附生微生物产生的活性物质有关。本文对海绵及其共附生微生物的化学防御进行讨论,希望对相关机制的揭示有所帮助。  相似文献   

5.
Melatonin (MLT) is a hormone synthesized from the pineal gland. It is a direct scavenger of free radicals, which is related to its capability to defend cells from oxidative stress. Recently MLT-related compounds are under investigation to establish which exhibit the maximum activity with the lowest side effects. In this study 5-chloroindole hydrazide/hydrazone derivatives were synthesized from 5-chloroindole-3-carboxaldehyde and phenyl hydrazine derivatives. All the compounds characterized and in vitro antioxidant activity was investigated against MLT and BHT. Most of the compounds showed strong inhibitory effect on the superoxide radical scavenging assay at 1?mM concentration (79 to 95%). Almost all the tested compounds possessed strong scavenging activity against the DPPH radical scavenging activity with IC(50) values (2 to 60 μM). Lastly, compound 1j revealed stronger inhibitory activity against MLT in the LP inhibitory assay at 0.1mM concentration (51%) while the rest of the compounds showed moderate inhibition.  相似文献   

6.
A conception, some principles of determination and limits of maximum concentration limit (MCL) of chemical compounds in environment are considered. The experimental results confirming the threshold character of pollution influence upon plants and animals are discussed. It is shown that the MCL conception has a scanty applicability and doesn't defend the man from environmental pollutions. A conclusion about the necessity of alternative approaches to the determination of limiting load on ecosystems is made.  相似文献   

7.
虫害诱导的植物挥发物代谢调控机制研究进展   总被引:4,自引:0,他引:4  
穆丹  付建玉  刘守安  韩宝瑜 《生态学报》2010,30(15):4221-4233
长期受自然界的非生物/生物侵害,植物逐步形成了复杂的防御机制,为防御植食性昆虫的为害,植物释放虫害诱导产生的挥发性化合物(herbivore-induced plant volatiles,HIPVs)。HIPVs是植物-植食性昆虫-天敌三级营养关系之间协同进化的结果。HIPVs的化学组分因植物、植食性昆虫种类的不同而有差异。生态系统中,HIPVs可在植物与节肢动物、植物与微生物、虫害植物与邻近的健康植物、或同一植株的受害和未受害部位间起作用,介导防御性反应。HIPVs作为寄主定位信号,在吸引捕食性、寄生性天敌过程中起着重要作用。HIPVs还可以作为植物间信息交流的工具,启动植株的防御反应而增强抗虫性。不论从生态学还是经济学角度来看,HIPVs对于农林生态系中害虫综合治理策略的完善具有重要意义。前期的研究在虫害诱导植物防御的化学生态学方面奠定了良好基础,目前更多的研究转向阐述虫害诱导植物抗性的分子机制。为了深入了解HIPVs的代谢调控机制,主要从以下几个方面进行了综述。因为植食性昆虫取食造成的植物损伤是与昆虫口腔分泌物共同作用的结果,所以首先阐述口腔分泌物在防御反应中的作用。挥发物诱导素volicitin和β-葡萄糖苷酶作为口腔分泌物的组分,是产生HIPVs的激发子,通过调节伤信号诱发HIPVs的释放。接着阐述了信号转导途径对HIPVs释放的调节作用,并讨论了不同信号途径之间的交互作用。就HIPVs的代谢过程而言,其过程受信号转导途径(包括茉莉酸、水杨酸、乙烯、过氧化氢信号途径)的调控,其中茉莉酸信号途径是诱发HIPVs释放的重要途径。基于前人的研究,综述了HIPVs的主要代谢过程及其过程中关键酶类的调控作用。文中的HIPVs主要包括萜烯类化合物、绿叶挥发物和莽草酸途径产生的芳香族化合物,如水杨酸甲酯和吲哚等。作为化学信号分子,这些化合物中的一部分还能激活邻近植物防御基因的表达。萜烯合酶是各种萜烯类化合物合成的关键酶类,脂氧合酶、过氧化氢裂解酶也是绿叶挥发物代谢途径中的研究热点,而苯丙氨酸裂解酶和水杨酸羧基甲基转移酶分别是合成水杨酸及其衍生物水杨酸甲酯的关键酶类。这些酶类的基因在转录水平上调控着HIPVs代谢途径。最后展望了HIPVs的研究前景。  相似文献   

8.
Streptomyces spp. are common symbionts of the leaf-cutting ant species Acromyrmex octospinosus, which feeds on basidiomycete fungus leaf matter and harvests the lipid- and carbohydrate-rich gongylidia as a food source. A. octospinosus and other ant genera use antifungal compounds produced by Streptomyces spp. and other actinomycetes in order to help defend their fungal gardens from parasitic fungi. Herein, we report the draft genome sequence of Streptomyces strain S4, an antifungal-producing symbiont of A. octospinosus.  相似文献   

9.
Melatonin (MLT) is a hormone synthesized from the pineal gland. It is a direct scavenger of free radicals, which is related to its capability to defend cells from oxidative stress. Recently MLT-related compounds are under investigation to establish which exhibit the maximum activity with the lowest side effects. In this study 5-chloroindole hydrazide/hydrazone derivatives were synthesized from 5-chloroindole-3-carboxaldehyde and phenyl hydrazine derivatives. All the compounds characterized and in vitro antioxidant activity was investigated against MLT and BHT. Most of the compounds showed strong inhibitory effect on the superoxide radical scavenging assay at 1?mM concentration (79 to 95%). Almost all the tested compounds possessed strong scavenging activity against the DPPH radical scavenging activity with IC50 values (2 to 60 µM). Lastly, compound 1j revealed stronger inhibitory activity against MLT in the LP inhibitory assay at 0.1mM concentration (51%) while the rest of the compounds showed moderate inhibition.  相似文献   

10.
The function of terpene natural products in the natural world   总被引:5,自引:0,他引:5  
As the largest class of natural products, terpenes have a variety of roles in mediating antagonistic and beneficial interactions among organisms. They defend many species of plants, animals and microorganisms against predators, pathogens and competitors, and they are involved in conveying messages to conspecifics and mutualists regarding the presence of food, mates and enemies. Despite the diversity of terpenes known, it is striking how phylogenetically distant organisms have come to use similar structures for common purposes. New natural roles undoubtedly remain to be discovered for this large class of compounds, given that such a small percentage of terpenes has been investigated so far.  相似文献   

11.
Plant Volatiles: Recent Advances and Future Perspectives   总被引:2,自引:0,他引:2  
Volatile compounds act as a language that plants use for their communication and interaction with the surrounding environment. To date, a total of 1700 volatile compounds have been isolated from more than 90 plant families. These volatiles, released from leaves, flowers, and fruits into the atmosphere and from roots into the soil, defend plants against herbivores and pathogens or provide a reproductive advantage by attracting pollinators and seed dispersers. Plant volatiles constitute about 1% of plant secondary metabolites and are mainly represented by terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid derivatives. In this review we focus on the functions of plant volatiles, their biosynthesis and regulation, and the metabolic engineering of the volatile spectrum, which results in plant defense improvement and changes of scent and aroma properties of flowers and fruits.  相似文献   

12.
Herbivory-induced signalling in plants: perception and action   总被引:1,自引:0,他引:1  
Plants and herbivores have been interacting for millions of years. Over time, plants have evolved mechanisms to defend against herbivore attacks. Herbivore-challenged plants reconfigure their metabolism to produce compounds that are toxic, repellant or anti-digestive for the herbivores. Some compounds are volatile signals that attract the predators of herbivores. All these responses are tightly regulated by a signalling network triggered by the plant's perception machinery. Several compounds that specifically elicit herbivory-induced responses in plants have been isolated from herbivore oral secretions and oviposition fluids. Elicitor perception is rapidly followed by cell membrane depolarization, calcium influx and mitogen-activated protein kinase (MAPK) activation; plants also elevate the concentrations of reactive oxygen and nitrogen species, and modulate phytohormone levels accordingly. In addition to these reactions in the herbivore-attacked regions of a leaf, defence responses are also mounted in unattacked parts of the attacked leaf and as well in unattacked leaves. In this review, we summarize recent progress in understanding how plants recognize herbivory, the involvement of several important signalling pathways that mediate the responses to herbivore attack and the signals that transduce local into systemic responses.  相似文献   

13.
Gorgonians are abundant in tropical waters and their polyps are seldom predated on. This study investigates how gorgonians defend themselves chemically and physically against fish predation. Gorgonian extracts and sclerites were incorporated into fish feed and tested on reef fishes. Laboratory bioassays using Greyhead wrasses, Halichoeres purpurescens, as well as field bioassays showed five gorgonian species from the family Ellisellidae and three from the family Plexauridae collected from Singapore reefs to be deterrent towards fishes. Bioassays of fractions obtained from subsequent fractionation suggested synergistic or additive effects between compounds present in gorgonians. Sclerites incorporated into fish feed in their natural concentrations were also tested for fish deterrence and were positive for only two gorgonian species from the family Ellisellidae.  相似文献   

14.
15.
Multidrug resistance (MDR) systems are ubiquitously present in prokaryotes and eukaryotes and defend both types of organisms against toxic compounds in the environment. Four families of MDR systems have been described, each family removing a broad spectrum of compounds by a specific membrane-bound active efflux pump. In the present study, at least four MDR systems were identified genetically in the soil bacterium Streptomyces lividans. The resistance genes of three of these systems were cloned and sequenced. Two of them are accompanied by a repressor gene. These MDR gene sequences are found in most other Streptomyces species investigated. Unlike the constitutively expressed MDR genes in Escherichia coli and other gram-negative bacteria, all of the Streptomyces genes were repressed under laboratory conditions, and resistance arose by mutations in the repressor genes.Abbreviations MDR Multidrug resistance  相似文献   

16.
The foraging ecology of mammalian herbivores is strongly shaped by plant secondary compounds (PSCs) that defend plants against herbivory. Conventional wisdom holds that gut microbes facilitate the ingestion of toxic plants; however, this notion lacks empirical evidence. We investigated the gut microbiota of desert woodrats (Neotoma lepida), some populations of which specialise on highly toxic creosote bush (Larrea tridentata). Here, we demonstrate that gut microbes are crucial in allowing herbivores to consume toxic plants. Creosote toxins altered the population structure of the gut microbiome to facilitate an increase in abundance of genes that metabolise toxic compounds. In addition, woodrats were unable to consume creosote toxins after the microbiota was disrupted with antibiotics. Last, ingestion of toxins by naïve hosts was increased through microbial transplants from experienced donors. These results demonstrate that microbes can enhance the ability of hosts to consume PSCs and therefore expand the dietary niche breadth of mammalian herbivores.  相似文献   

17.
Abstract Plants accumulate a diverse array of natural products, which can serve either to defend the plant against various microbes in its environment or to attract various microbes, both beneficial and pathogenic. Plants must also attract pollinators, repel or poison herbivores, compete with other plant species, and protect themselves from environmental dangers such as high light intensities. Some compounds have been implicated in playing a role in multiple interactions. Although the structures vary immensely in size and complexity, most are derived from a limited number of core biosynthetic pathways. This review briefly summarizes the biosynthetic origins of phenylpropanoid (including simple phenolics, flavonoids, anthocyanins and isoflavonoids), polyacetate, terpenoid, and alkaloid classes of metabolites. Compounds reported to be important in plant-microbe, plant-animal, and plant-plant interactions will be given as examples of each of these classes. Other aspects of biosynthesis also will be discussed, including the timing or location of biosynthesis, the potential for genetic manipulation of these pathways, and various questions regarding the biosynthesis of these compounds.  相似文献   

18.
Background and Aims The development of plant secondary metabolites during early life stages can have significant ecological and evolutionary implications for plant–herbivore interactions. Foliar terpenes influence a broad range of ecological interactions, including plant defence, and their expression may be influenced by ontogenetic and genetic factors. This study investigates the role of these factors in the expression of foliar terpene compounds in Eucalyptus globulus seedlings.Methods Seedlings were sourced from ten families each from three genetically distinct populations, representing relatively high and low chemical resistance to mammalian herbivory. Cotyledon-stage seedlings and consecutive leaf pairs of true leaves were harvested separately across an 8-month period, and analysed for eight monoterpene compounds and six sesquiterpene compounds.Key Results Foliar terpenes showed a series of dynamic changes with ontogenetic trajectories differing between populations and families, as well as between and within the two major terpene classes. Sesquiterpenes changed rapidly through ontogeny and expressed opposing trajectories between compounds, but showed consistency in pattern between populations. Conversely, changed expression in monoterpene trajectories was population- and compound-specific.Conclusions The results suggest that adaptive opportunities exist for changing levels of terpene content through ontogeny, and evolution may exploit the ontogenetic patterns of change in these compounds to create a diverse ontogenetic chemical mosaic with which to defend the plant. It is hypothesized that the observed genetically based patterns in terpene ontogenetic trajectories reflect multiple changes in the regulation of genes throughout different terpene biosynthetic pathways.  相似文献   

19.
Marine organisms especially those that live sessile, as sponges, are well known to have specific relationships with a great variety of microorganisms including bacteria and fungi. As most simple metazoan phylum, the Porifera, which emerged first during the transition from the non-Metazoa to the Metazoa from the common ancestor, comprise wide arrays of recognition molecules, both for Gram-negative bacteria and for Gram-positive bacteria as well as for fungi. They react specifically with effector molecules to inhibit or kill the invading microorganisms. The elicitation and the subsequent effector reactions of the sponges towards these microbes are outlined. However, besides of the elimination of bacteria and fungi, some of those taxa are kept as symbionts of the sponges, allowing them, for example, to accumulate the essential element manganese or to synthesize carotinoids. The sponges produce low-molecular-weight bioactive compounds, secondary metabolites, to eliminate the microorganisms. In addition, they are armed with cationic antimicrobial peptides allowing them to defend against invasive microorganisms and, in parallel, to kill or repel also metazoan invaders. The broad range of chemically and functionally different compounds qualifies the Porifera as the most important animal phylum to be exploited as a source for the isolation of new potential drugs. First molecular biological strategies have been outlined to obtain those compounds in a sustainable way, by producing them recombinantly.  相似文献   

20.
Parasites are ubiquitous, and the ability to defend against these is of paramount importance. One way to fight diseases is self‐medication, which occurs when an organism consumes biologically active compounds to clear, inhibit, or alleviate disease symptoms. Here, we show for the first time that ants selectively consume harmful substances (reactive oxygen species, ROS) upon exposure to a fungal pathogen, yet avoid these in the absence of infection. This increased intake of ROS, while harmful to healthy ants, leads to higher survival of exposed ants. The fact that ingestion of this substance carries a fitness cost in the absence of pathogens rules out compensatory diet choice as the mechanism, and provides evidence that social insects medicate themselves against fungal infection, using a substance that carries a fitness cost to uninfected individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号