首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cross-linking of cell surface Fas molecules by Fas ligand or by agonistic anti-Fas Abs induces cell death by apoptosis. We found that a serine protease inhibitor, N-tosyl-L-lysine chloromethyl ketone (TLCK), dramatically enhances Fas-mediated apoptosis in the human T cell line Jurkat and in various B cell lines resistant to Fas-mediated apoptosis. The enhancing effect of TLCK is specific to Fas-induced cell death, with no effect seen on TNF-alpha or TNF-related apoptosis-inducing ligand-induced apoptosis. TLCK treatment had no effect on Fas expression levels on the cell surface, and neither promoted death-inducing signaling complex formation nor decreased expression levels of cellular inhibitors of apoptosis (FLICE inhibitory protein, X chromosome-linked inhibitor of apoptosis, and Bcl-2). Activation of the Fas-mediated apoptotic pathway by anti-Fas Ab is accompanied by aggregation of Fas molecules to form oligomers that are stable to boiling in SDS and beta-ME. Fas aggregation is often considered to be required for Fas-mediated apoptosis. However, sensitization of cells to Fas-mediated apoptosis by TLCK or other agents (cycloheximide, protein kinase C inhibitors) causes less Fas aggregation during the apoptotic process compared with that in nonsensitized cells. These results show that Fas aggregation and Fas-mediated apoptosis are not directly correlated and may even be inversely correlated.  相似文献   

2.
It has recently become apparent that the microenvironment made up of the extracellular matrix may affect cell signaling. In this study, we evaluated Fas-triggered apoptosis in T cells in contact with tumor cells, which resembles the cell-to-cell interactions found in tumor regions. Jurkat cells were less susceptible to the Fas-mediated apoptosis when cocultured with U118, HeLa, A549, and Huh-7 tumor cells. This was indicated by less plasma membrane alteration, an amelioration of the loss of mitochondria membrane potential, a decrease in caspase-8 and caspase-3 activation, a decrease in DNA fragmentation factor-45/35 cleavage, and a reduction in the breakage of DNA when compared with Jurkat cells cultured alone. In contrast, the tumor cell lines MCF-7 and HepG2 produced no such protective effect. This protective event was independent of the expression of Fas ligand on the tumor cells. Interrupting the beta integrins-matrix interaction diminished the coculture effect. In Jurkat cells, cell matrix contact reduced the assembly of the Fas death-inducing signaling complex and Bcl-x(L) cleavage, but enhanced the phosphorylation of ERK1/2, p38 MAPK, and Akt. Only PI3K inhibitor, but not kinase inhibitors for MEK, ERK1/2, p38 MAPK, JNK, protein kinase C, and protein kinase A, completely abolished this tumor cell contact-associated protection and in parallel restored Fas-induced Bcl-x(L) cleavage as well as decreasing the phosphorylation of Bad at serine 136. Together, our results indicate that stimulation of the beta integrin signal of T cells by contact with tumor cells may trigger a novel protective signaling through the PI3K/Akt pathway of T cells against Fas-mediated apoptosis.  相似文献   

3.
MEK1 activation rescues Jurkat T cells from Fas-induced apoptosis.   总被引:4,自引:0,他引:4  
Although the protease cascade initiated by Fas (CD95, Apo-1) is well characterized, there remains little known about how kinase pathways may impact on Fas-mediated apoptosis. We recently observed that in T lymphocytes Fas strongly induced activation of JNK (c-Jun N-terminal kinase) but not of second messengers leading to activation of ERK (extracellular regulated kinase). Additionally, Fas-mediated apoptosis was significantly inhibited with PMA, a potent activator of the ERK signaling pathway. This suggested a model whereby activation of the ERK pathway might attenuate Fas-mediated apoptosis. This was confirmed in the current study by showing that activation of MEK1, the upstream regulator of ERK, reduces Fas-mediated apoptosis, whereas inhibition of MEK1 augments apoptosis by Fas. Furthermore, Fas-mediated apoptosis of Jurkat T cells is not affected by constitutively active or dominant negative variants that modulate the JNK pathway. These results demonstrate that Fas-induced JNK activation is not required for apoptosis by Jurkat T cells, but rather is more likely secondary to cell stress during the early phases of apoptosis. This is supported by the ability of the caspase blocker zVAD to inhibit both apoptosis and JNK activation by Fas.  相似文献   

4.
Upon engagement by its ligand, the Fas receptor (CD95/APO-1) is oligomerized in a manner dependent on F-actin. It has been shown that ezrin, a member of the ERM (ezrin-radixin-moesin) protein family can link Fas to the actin cytoskeleton. We show herein that in Jurkat cells, not only ezrin but also moesin can associate with Fas. The same observation was made in activated human peripheral blood T cells. Fas/ezrin or moesin (E/M) association increases in Jurkat cells following Fas triggering and occurs concomitantly with the formation of SDS- and 2-ME-stable high molecular mass Fas aggregates. Ezrin and moesin have to be present together for the formation of Fas aggregates since down-regulation of either ezrin or moesin expression with small interfering RNAs completely inhibits Fas aggregate formation. Although FADD (Fas-associated death domain protein) and caspase-8 associate with Fas in the absence of E/M, subsequent events such as caspase-8 activation and sensitivity to apoptosis are decreased. During the course of Fas stimulation, ezrin and moesin become phosphorylated, respectively, on T567 and on T558. This phosphorylation is mediated by the kinase ROCK (Rho-associated coiled coil-containing protein kinase) I subsequently to Rho activation. Indeed, inhibition of either Rho or ROCK prevents ezrin and moesin phosphorylation, abrogates the formation of Fas aggregates, and interferes with caspase-8 activation. Thus, phosphorylation of E/M by ROCK is involved in the early steps of apoptotic signaling following Fas triggering and regulates apoptosis induction.  相似文献   

5.
Mouse monoclonal anti-Fas (CD95) antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11.Key words: Fas, CD95, CH-11, apoptosis, Fas ligand, polystyrene beads.  相似文献   

6.
Fas (CD95) mediates apoptosis of many cell types, but the susceptibility of cells to killing by Fas ligand and anti-Fas antibodies is highly variable. Jurkat T cells lacking CD47 (integrin-associated protein) are relatively resistant to Fas-mediated death but are efficiently killed by Fas ligand or anti-Fas IgM (CH11) upon expression of CD47. Lack of CD47 impairs events downstream of Fas activation including caspase activation, poly-(ADP-ribose) polymerase cleavage, cytochrome c release from mitochondria, loss of mitochondrial membrane potential, and DNA cleavage. Neither CD47 signaling nor raft association of CD47 is required to enable Fas apoptosis. CH11 induces association of Fas and CD47. Primary T cells from CD47-null mice are also protected from Fas-mediated killing relative to wild type T cells. Thus CD47 associates with Fas upon its activation and augments Fas-mediated apoptosis.  相似文献   

7.
Fas, upon cross-linking with Fas ligand (FasL) or Fas agonistic antibody, transduces apoptotic yet also proliferative signals, which have been implicated in tumor pathogenesis. In this study, we investigated the molecular mechanisms that control Fas-mediated signaling in glioma cells. Fas agonistic antibody, CH-11, induced apoptosis in sensitive glioma cells through caspase-8 recruitment to the Fas-mediated death-inducing signaling complex (DISC) where caspase-8 was cleaved to initiate apoptosis through a systematic cleavage of downstream substrates. In contrast, CH-11 stimulated cell growth in resistant glioma cells through recruitment of c-FLIP (cellular Fas-associated death domain (FADD)-like interleukin-1beta-converting enzyme (FLICE)-inhibitory protein) to the Fas-mediated DISC. Three isoforms of long form c-FLIP were detected in glioma cells, but only the phosphorylated isoform was recruited to and cleaved into a p43 intermediate form in the Fas-mediated DISC in resistant cells. Calcium/calmodulin-dependent protein kinase II (CaMK II) activity was up-regulated in resistant cells. Treatment of resistant cells with the CaMK II inhibitor KN-93 inhibited CaMK II activity, reduced c-FLIP expression, inhibited c-FLIP phosphorylation, and rescued CH-11 sensitivity. Transfection of CaMK II cDNA in sensitive cells rendered them resistant to CH-11. These results indicated that CaMK II regulates c-FLIP expression and phosphorylation, thus modulating Fas-mediated signaling in glioma cells.  相似文献   

8.
9.
Fas play a critical role in T-cell apoptosis by functioning as a major cell-surface death receptor. To explore a potential method that can improve the sensitivity to Fas-mediated apoptosis in malignant precursor T-cells. Fas gene was stable transfected into Jurkat cells to establish a new cell line named Jurkat-Fas with over-expressed Fas. RT-PCR, real-time RT-PCR, flow cytometry, and confocal microscopy assay were performed to detect the Fas level of mRNA and protein in the two cell lines. The sensitivities to Fas-mediated apoptosis of the two cell lines were evaluated by flow cytometry with Alexa Fluor 488 annexin V/PI staining in vitro. Tumor xenograft models were prepared with Jurkat and Jurkat-Fas cells for in vivo study. Fas mRNA and protein levels in Jurkat-Fas cell line were higher than that in Jurkat cell line. Compared to Jurkat cells, apoptosis rates of Jurkat-Fas cells were remarkably higher in vitro, and the tumor growth of Jurkat-Fas cells in nude mice was significantly inhibited in vivo. Stable over-expression of extrinsic Fas gene can significantly ameliorate the sensitivity to Fas-mediated apoptosis in human malignant T-cell, which indicates a novel strategy to improve therapeutic effects on precursor T-cell malignancy.  相似文献   

10.
11.
以Molt-4、Jurkat细胞株和外周血淋巴细胞(peripheralbloodlymphocyte,PBL)为靶细胞,检测细胞膜上Fas的表达。人重组Fas配体(recombinanthumanFasligand,rhFasL)诱导细胞6~36h后用改良后的API等方法检测细胞凋亡及诱导凋亡过程中细胞周期蛋白的变化,探讨Fas介导的细胞凋亡与细胞周期的关系。结果显示:rhFasL诱导Molt-4、Jurkat细胞株和植物血凝素刺激进入细胞周期的PBL的凋亡具有细胞周期特异性并始动于G1期;而G0期PBL的细胞膜上虽然也有Fas的表达,但不能诱导细胞凋亡。研究还发现rhFasL诱导细胞凋亡时G1期的细胞周期蛋白D3明显升高,细胞周期蛋白E明显下降。以上结果表明rhFasL体外诱导的细胞凋亡发生在晚G1期,细胞凋亡的发生与细胞是否通过限制点进入细胞周期有关,细胞凋亡发生于晚G1期是G1期细胞周期蛋白E的下降和检测点的监督导致DNA受损的细胞不能通过G1/S交界的结果。  相似文献   

12.
Fas and p75 neurotrophin receptors (p75NTR) are death receptors that alone induce apoptosis of SH-SY5Y neuroblastoma cell line respectively by Fas ligand or brain-derived neurotrophic factor (BDNF, a p75NTR ligand). We report on the modulation of Fas-mediated apoptosis by concomitant p75NTR activation. The exposure to both ligands suppressed the apoptotic effect. A co-localisation of Fas and p75NTR receptors was evidenced by co-capping and immunoprecipitation assays. Moreover, a caspase-8 inhibitor suppressed the protective effect of the concomitant BDNF and Fas ligand stimulation, suggesting that p75NTR and Fas receptors could share common signalling pathways.  相似文献   

13.
Activation of caspases is required in Fas receptor mediated apoptosis. Maintenance of a reducing environment inside the cell has been suggested to be necessary for caspase activity during apoptosis. We explored the possibility to potentiate Fas mediated killing of tumor cells by alpha-lipoic acid (LA), a redox-active drug and nutrient that is intracellularly reduced to a potent reductant dihydrolipoic acid. Treatment of cells with 100 microM LA for 72 h markedly potentiated Fas-mediated apoptosis of leukemic Jurkat cells but not that of peripheral blood lymphocytes from healthy humans. In Jurkat, Fas activation was followed by rapid loss of cell thiols, decreased mitochondrial membrane potential, increased [Ca2+]i and increased PKC activity; all these responses were potentiated in LA pretreated cells. PKCdelta played an important role in mediating the effect of LA on Fas-mediated cell death. In response to Fas activation LA treatment potentiated caspase 3 activation by over 100%. The ability of LA to potentiate Fas mediated killing of leukemic cells was abrogated by a caspase 3 inhibitor suggesting that increased caspase 3 activity in LA-treated Fas-activated cells played an important role in potentiating cell death. This work provides first evidence showing that inducible caspase 3 activity may be pharmacologically up-regulated by reducing agents such as dihydrolipoic acid.  相似文献   

14.
Apoptosis induction by epigallocatechin gallate involves its binding to Fas   总被引:16,自引:0,他引:16  
Epigallocatechin gallate (EGCG) is known to induce apoptosis in various types of tumor cells, but the precise mechanism by which EGCG induces apoptosis remains to be elucidated. The Fas-Fas ligand system is one of the major pathways operating in the apoptotic cascade. The aim of this study was to examine the possibility that EGCG-binding to Fas triggers the Fas-mediated apoptosis. The EGCG treatment of human monocytic leukemia U937 cells resulted in elevation of caspase 8 activity and fragmentation of caspase 8. The DNA ladder formation caused by the EGCG treatment was inhibited by the caspase 8 inhibitor. These findings suggested the involvement of the Fas-mediated cascade in the EGCG-induced apoptosis in U937 cells. Affinity chromatography revealed the binding between EGCG and Fas. Thus, the results suggest that EGCG-binding to Fas, presumably on the cell surface, triggers the Fas-mediated apoptosis in U937 cells.  相似文献   

15.
Using an in situ kinase assay we have identified kinases that are elevated in some multidrug resistant cells. Kinases were detected by measurement of 32P incorporation in proteins that were renatured after being subjected to SDS-polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride membranes [Ferrell and Martin: J Biol Chem 264:20723–20729, 1989; Mol Cell Biol 10:3020–3026, 1990]. Kinases at 79, 84, and 92 kDa showed increased activity in the multidrug resistant human KB-V1 cells as compared to the sensitive parental KB-3-1 cells. The KB-V1 multidrug resistant cell line exhibited a 170 kDa membrane associated kinase activity that was not present in the parental drug sensitive line. The 170 kDa kinase activity was not affected by Ca++, phosphatidylserine, or cAMP, but was diminished after incubation in the presence of the kinase inhibitors staurosporine, K252a and KT5720. The 170 kDa kinase activity phosphorylated mainly threonine, with no evidence of tyrosine phosphorylation, and was not identical to either the multidrug resistance associated P-glycoprotein or the EGF receptor. Other multidrug resistant cell lines also showed elevated 170 kDa kinase activity, such as the human breast cancer MCF-7/AdrR and murine melanoma B16/AdrR. cells, but the activity was not present in murine leukemia P-388 sensitive or multidrug resistant cells.  相似文献   

16.
B cell susceptibility to Fas-mediated apoptosis is regulated in a receptor-specific fashion. CD40 engagement produces marked sensitivity to Fas killing, whereas surface Ig (sIg) engagement blocks Fas signaling for cell death in otherwise sensitive, CD40-stimulated B cell targets, and thus, induces a state of Fas resistance. The signaling mediator, Bruton's tyrosine kinase (Btk), is required for certain sIg-triggered responses, and Btk is reported to directly bind Fas and block Fas-mediated apoptosis. For these reasons, the role of Btk as a mediator of sIg-induced Fas resistance was examined. Dysfunction of Btk through mutation, and absence of Btk through deletion did not interfere with induction of Fas resistance by anti-Ig. This may be due, at least in part, to induction of Btk-dependent Bcl-2 family members by anti-Ig after CD40 ligand treatment. However, the susceptibility to Fas-mediated apoptosis of B cell targets stimulated by CD40 ligand alone was increased in the absence of Btk. These results indicate that Fas resistance produced by sIg triggering does not require Btk, but suggests that in certain situations Btk modulates B cell susceptibility to Fas killing.  相似文献   

17.
Fas (CD95) is a member of the tumor necrosis factor (TNF) receptor superfamily and plays a crucial role in the induction of apoptosis. However, like TNF, Fas can induce nonapoptotic signaling pathways. We previously demonstrated that mice lacking Fas specifically in adipocytes are partly protected from diet-induced insulin resistance, potentially via decreased delivery of FAs to the liver, as manifested by lower total liver ceramide content. In the present study, we aimed to delineate the signaling pathway involved in Fas-mediated adipocyte lipid mobilization. Treatment of differentiated 3T3-L1 adipocytes with membrane-bound Fas ligand (FasL) significantly increased lipolysis after 12 h without inducing apoptosis. In parallel, Fas activation increased phosphorylation of ERK1/2, and FasL-induced lipolysis was blunted in the presence of the ERK-inhibitor U0126 or in ERK1/2-depleted adipocytes. Furthermore, Fas activation increased phosphorylation of the Ca2+/calmodulin-dependent protein kinases II (CaMKII), and blocking of the CaMKII-pathway (either by the Ca2+ chelator BAPTA or by the CaMKII inhibitor KN62) blunted FasL-induced ERK1/2 phosphorylation and glycerol release. In conclusion, we propose a novel role for CaMKII in promoting lipolysis in adipocytes.  相似文献   

18.
Abstract: The phosphorylation of surface proteins by ectoprotein kinase has been proposed to play a role in mechanisms underlying neuronal differentiation and their responsiveness to nerve growth factor (NGF). PC 12 clones represent an optimal model for investigating the mode of action of NGF in a homogeneous cell population. In the present study we obtained evidence that PC12 cells possess ectoprotein kinase and characterized the endogenous phosphorylation of its surface protein substrates. PC12 cells maintained in a chemically defined medium exhibited phosphorylation of proteins by [γ-32P]ATP added to the medium at time points preceding the intracellular phosphorylation of proteins in cells labeled with 32Pi. This activity was abolished by adding apyrase or trypsin to the medium but was not sensitive to addition of an excess of unlabeled Pi. As also expected from ecto-protein kinase activity, PC12 cells catalyzed the phosphorylation of an exogenous protein substrate added to the medium, dephospho-α-casein, and this activity competed with the endogenous phosphorylation for extracellular ATP. Based on these criteria, three protein components migrating in sodium dodecyl sulfate gels with apparent molecular weights of 105K, 39K, and 20K were identified as exclusive substrates of ecto-protein kinase in PC12 cells. Of the phosphate incorporated into these proteins from extracellular ATP, 75–87% was found in phosphothreonine. The phosphorylation of the 39K protein by ecto-protein kinase did not require Mg2+, implicating this activity in the previously demonstrated regulation of Ca2+-dependent, high-affinity norepinephrine uptake in PC12 cells by extracellular ATP. The protein kinase inhibitor K-252a inhibited both intra- and extracellular protein phosphorylation in intact PC12 cells. Its hydrophilic analogue K-252b, had only minimal effects on intracellular protein phosphorylation but readily inhibited the phosphorylation of specific substrates of ecto-protein kinase in PC12 cells incubated with extracellular ATP, suggesting the involvement of ecto-protein kinase in the reported inhibition of NGF-induced neurite extension by K-252b. Preincubation of PC12 cells with 50 ng/ml of NGF for 5 min stimulated the activity of ecto-protein kinase toward all its endogenous substrates. Exposure of PC12 cells to the same NGF concentration for 3 days revealed another substrate of ecto-protein kinase, a 53K protein, whose surface phosphorylation is expressed only after NGF-induced neuronal differentiation. In the concentration range (10–100 μM) at which 6-thioguanine blocked NGF-promoted neurite outgrowth in PC12 cells, 6-thioguanine effectively inhibited the phosphorylation of specific proteins by ecto-protein kinase. This study provides the basis for continued investigation of the involvement of ecto-protein kinase and its surface protein substrates in neuronal differentiation, neuritogenesis, and synaptogenesis.  相似文献   

19.
Regulation of death receptor-mediated apoptosis is incompletely understood. Previous studies have demonstrated that phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, inhibits Fas (CD95)-mediated apoptosis in Jurkat (type II) cells but not SKW6.4 (type I) cells. In this study, we demonstrated that PMA also protects Jurkat cells from apoptosis induced by tumor necrosis factor-alpha and the tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL). Interestingly, PMA failed to protect Jurkat cells from apoptosis induced by other agents, including etoposide, camptothecin, and gamma-irradiation. Analysis of the initial events induced by agonistic anti-Fas antibodies revealed that PMA inhibited Fas binding to Fas-associated polypeptide with death domain (FADD) in Jurkat cells but not in SKW6.4 cells. Although the protein kinase inhibitor bisindoylmaleimide VIII increased apoptosis induced by agonistic anti-Fas antibody, tumor necrosis factor-alpha, and TRAIL, these effects were not observed with the protein kinase C inhibitor H7 and were not associated with increased FADD recruitment to Fas. These results indicate that PMA inhibits death signaling induced by a number of discrete receptors and suggest that the effects are mediated at the level of receptor-mediated adaptor molecule recruitment.  相似文献   

20.
Although treatment with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) is known to protect a subset of cells from induction of apoptosis by death ligands such as Fas ligand and tumor necrosis factor-α-related apoptosis-inducing ligand, the mechanism of this protection is unknown. This study demonstrated that protection in short term apoptosis assays and long term proliferation assays was maximal when Jurkat or HL-60 human leukemia cells were treated with 2–5 nm PMA. Immunoblotting demonstrated that multiple PKC isoforms, including PKCα, PKCβ, PKCϵ, and PKCθ, translocated from the cytosol to a membrane-bound fraction at these PMA concentrations. When the ability of short hairpin RNA (shRNA) constructs that specifically down-regulated each of these isoforms was examined, PKCβ shRNA uniquely reversed PMA-induced protection against cell death. The PKCβ-selective small molecule inhibitor enzastaurin had a similar effect. Although mass spectrometry suggested that Fas is phosphorylated on a number of serines and threonines, mutation of these sites individually or collectively had no effect on Fas-mediated death signaling or PMA protection. Further experiments demonstrated that PMA diminished ligand-induced cell surface accumulation of Fas and DR5, and PKCβ shRNA or enzastaurin reversed this effect. Moreover, enzastaurin sensitized a variety of human tumor cell lines and clinical acute myelogenous leukemia isolates, which express abundant PKCβ, to tumor necrosis factor-α related apoptosis-inducing ligand-induced death in the absence of PMA. Collectively, these results identify a specific PKC isoform that modulates death receptor-mediated cytotoxicity as well as a small molecule inhibitor that mitigates the inhibitory effects of PKC activation on ligand-induced death receptor trafficking and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号