首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a protocol to tag proteins expressed from their endogenous chromosomal locations in individual mammalian cells using central dogma tagging. The protocol can be used to build libraries of cell clones, each expressing one endogenous protein tagged with a fluorophore such as the yellow fluorescent protein. Each round of library generation produces 100-200 cell clones and takes about 1 month. The protocol integrates procedures for high-throughput single-cell cloning using flow cytometry, high-throughput cDNA generation and 3' rapid amplification of cDNA ends, semi-automatic protein localization screening using fluorescent microscopy and freezing cells in 96-well format.  相似文献   

2.
This study reports the first development of a fluorescently labeled filamin. Smooth muscle filamin was labeled with fluorescent dyes in order to study its interaction with stress fibers and myofibrils, both in living cells and in permeabilized cells. The labeled filamin bound to the Z bands of isolated cross-striated myofibrils and to the Z bands and intercalated discs in both permeabilized embryonic cardiac myocytes and in frozen sections of adult rat ventricle. In permeabilized embryonic chick myotubes, filamin bound to early myotubes but was absent at later stages. In living embryonic chick myotubes, the fluorescently labeled filamin was incorporated into the Z bands of myofibrils during early and late stages of development but was absent during an intermediate stage. In living cardiac myocytes, filamin-IAR was incorporated into nascent as well as fully formed sarcomeres throughout development. In permeabilized nonmuscle cells, labeled filamin bound to attachment plaques and foci of polygonal networks and to the dense bodies in stress fibers. The periodic bands of filamin in stress fibers had a longer spacing in fibroblasts than in epithelial cells. When injected into living cells, filamin was readily incorporated into stress fibers in a striated pattern. The fluorescent filamin bands were broader in injected cells, however, than they were in permeabilized cells. We have interpreted these results from living and permeabilized cells to mean that native filamin is distributed along the full length of the actin filaments in the stress fibers, with a higher concentration present in the dense bodies. A sarcomeric model is presented indicating the position of filamin with respect to other proteins in the stress fiber.  相似文献   

3.
A rat monoclonal antibody against yeast tubulin (clone YL 1/2; Kilmartin et al., 1982) that reacts specifically with mammalian alpha-tubulin carrying a carboxyterminal tyrosine residue (Wehland et al., 1983) was used to localize microtubules in plant cells derived from onion root apices (Allium cepa L.). YL 1/2 reacted with all types of microtubular arrays known to occur in higher plant meristematic cells such as interphase cortical microtubules, pre-prophase bands, the mitotic spindle and phragmoplast microtubules. The specific labeling of microtubules in isolated cells from onion root tips by YL 1/2 indicates that plant cells like animal cells contain tubulin tyrosine ligase, the enzyme which posttranslationally modifies alpha-tubulin. This enzyme could be involved in the dynamic regulation of microtubular arrays in all eukaryotic cells.  相似文献   

4.
We have investigated whether living muscle and nonmuscle cells can discriminate between microinjected muscle and nonmuscle actins. Muscle actin purified from rabbit back and leg muscles and labeled with fluorescein isothiocyanate, and nonmuscle actin purified from lamb brain and labeled with lissamine rhodamine B sulfonyl chloride, were co-injected into chick embryonic cardiac myocytes and fibroblasts. When fluorescence images of the two actins were compared using filter sets selective for either fluorescein isothiocyanate or lissamine rhodamine B sulfonyl chloride, essentially identical patterns of distribution were detected in both muscle and nonmuscle cells. In particular, we found no structure that, at this level of resolution, shows preferential binding of muscle or nonmuscle actin. In fibroblasts, both actins are associated primarily with stress fibers and ruffles. In myocytes, both actins are localized in sarcomeres. In addition, the distribution of structures containing microinjected actins is similar to that of structure containing endogenous F-actin, as revealed by staining with fluorescent phalloidin or phallacidin. Our results suggest that, at least under these experimental conditions, actin-binding sites in muscle and nonmuscle cells do not discriminate among different forms of actins.  相似文献   

5.
Actin and the light chains of myosin were labeled with fluorescent dyes and injected into interphase PtK2 cells in order to study the changes in distribution of actin and myosin that occurred when the injected cells subsequently entered mitosis and divided. The first changes occurred when stress fibers in prophase cells began to disassemble. During this process, which began in the center of the cell, individual fibers shortened, and in a few fibers, adjacent bands of fluorescent myosin could be seen to move closer together. In most cells, stress fiber disassembly was complete by metaphase, resulting in a diffuse distribution of the fluorescent proteins throughout the cytoplasm with the greatest concentration present in the mitotic spindle. The first evidence of actin and myosin concentration in a cleavage ring occurred at late anaphase, just before furrowing could be detected. Initially, the intensity of fluorescence and the width of the fluorescent ring increased as the ring constricted. In cells with asymmetrically positioned mitotic spindles, both protein concentration and furrowing were first evident in the cortical regions closest to the equator of the mitotic spindle. As cytokinesis progressed in such asymmetrically dividing cells, fluorescent actin and myosin appeared at the opposite side of the cell just before furrowing activity could be seen there. At the end of cytokinesis, myosin and actin were concentrated beneath the membrane of the midbody and subsequently became organized in two rings at either end of the midbody.  相似文献   

6.
Although microtubules are known to be essential for chromosome segregation during cell division, they also play important roles in the regulation and function of cell polarity. Cell polarization is fundamental to appropriate tissue patterning and the regulation of cellular diversity during animal development. In polarized cells, microtubules are often organized asymmetrically along the polarity axis. Recent studies show that such asymmetry in microtubule organization is important to connect a cell's polarization with its polarized functions. In some cases, asymmetrically organized microtubule arrays themselves induce cell polarity. Here we present an overview of the mechanisms and functions of asymmetric microtubule organization and discuss the possible role of microtubule asymmetry in the symmetry-breaking that leads to cell polarization.  相似文献   

7.
Microtubule-associated protein 2 (MAP2) derivatized with iodoacetamidotetramethylrhodamine or with iodoacetamidofluorescein binds to microtubules after injection into living interphase cells [Scherson et al, 1984]. The binding of derivatized MAP2 stabilized microtubules in vitro; it was therefore important to check if the binding of MAP2 in vivo perturbed the dynamics and organization of the microtubule network. We have addressed these questions by studying the effect of the injection of derivatized MAP2 on mitosis in PtK 1 cells and on the recovery of the microtubule network from low temperature incubation in interphase cells. We found that the presence of derivatized MAP2 did not change the duration of any mitotic stage and that the injected cell normally completed mitosis. We subsequently showed that the injected MAP2 bound to the microtubules within 5 minutes after injection and remained bound throughout the course of mitosis. The reorganization of the microtubule network upon cooling and rewarming was studied in the cytoplasm of human foreskin fibroblasts (356 cells). During the recovery, the distribution of the fluorescent MAP2 in living cells was identical with the microtubule pattern visualized by immunofluorescence in lysed and fixed cells. In these experiments, the fluorescent MAP2 bound to microtubules can be considered as a nonperturbing reporter of the microtubule network. This result is discussed in terms of the role of MAPs in the dynamics and organization of microtubules in living cells.  相似文献   

8.
We have stably expressed in HeLa cells a chimeric protein made of the green fluorescent protein (GFP) fused to the transmembrane and cytoplasmic domains of the mannose 6-phosphate/insulin like growth factor II receptor in order to study its dynamics in living cells. At steady state, the bulk of this chimeric protein (GFP-CI-MPR) localizes to the trans-Golgi network (TGN), but significant amounts are also detected in peripheral, tubulo-vesicular structures and early endosomes as well as at the plasma membrane. Time-lapse videomicroscopy shows that the GFP-CI-MPR is ubiquitously detected in tubular elements that detach from the TGN and move toward the cell periphery, sometimes breaking into smaller tubular fragments. The formation of the TGN-derived tubules is temperature dependent, requires the presence of intact microtubule and actin networks, and is regulated by the ARF-1 GTPase. The TGN-derived tubules fuse with peripheral, tubulo-vesicular structures also containing the GFP-CI-MPR. These structures are highly dynamic, fusing with each other as well as with early endosomes. Time-lapse videomicroscopy performed on HeLa cells coexpressing the CFP-CI-MPR and the AP-1 complex whose gamma-subunit was fused to YFP shows that AP-1 is present not only on the TGN and peripheral CFP-CI-MPR containing structures but also on TGN-derived tubules containing the CFP-CI-MPR. The data support the notion that tubular elements can mediate MPR transport from the TGN to a peripheral, tubulo-vesicular network dynamically connected with the endocytic pathway and that the AP-1 coat may facilitate MPR sorting in the TGN and endosomes.  相似文献   

9.
Behaviour of microtubules and actin filaments in living Drosophila embryos   总被引:21,自引:0,他引:21  
We describe the preparation of novel fluorescent derivatives of rabbit muscle actin and bovine tubulin, and the use of these derivatives to study the behaviour of actin filaments and microtubules in living Drosophila embryos, in which the nuclei divide at intervals of 8 to 21 min. The fluorescently labelled proteins appear to function normally in vitro and in vivo, and they allow continuous observation of the cytoskeleton in living embryos without perturbing development. By coinjecting labelled actin and tubulin into the early syncytial embryo, the spatial relationships between the distinct filament networks that they form can be followed second by second. The dynamic rearrangements of actin filaments and microtubules observed confirms and extends results obtained from previous studies, in which fixation techniques and specific staining were used to visualize the cytoskeleton in the Drosophila embryo. However, no tested fixation method produces an exact representation of the in vivo microtubule distribution.  相似文献   

10.
《The Journal of cell biology》1983,97(5):1467-1475
The antigenic site recognized by a rat monoclonal antibody (clone YL 1/2) reacting with alpha-tubulin (Kilmartin, J.V., B. Wright, and C. Milstein, 1982, J. Cell Biol., 93:576-582) has been determined and partially characterized. YL 1/2 reacts specifically with the tyrosylated form of brain alpha-tubulin from different mammalian species. YL 1/2 reacts with the synthetic peptide Gly-(Glu)3-Gly-(Glu)2- Tyr, corresponding to the carboxyterminal amino acid sequence of tyrosylated alpha-tubulin, but does not react with Gly-(Glu)3-Gly- (Glu)2, the constituent peptide of detyrosylated alpha-tubulin. Electron microscopy as well as direct and indirect immunofluorescence microscopy shows that YL 1/2 binds to the surface of microtubules polymerized in vitro and in vivo. Further in vitro studies show that the antibody has no effect on the rate and extent of microtubule polymerization, the stability of microtubules, and the incorporation of the microtubule-associated proteins (MAP2) and tau into microtubules. In vivo studies using Swiss 3T3 fibroblasts injected with YL 1/2 show that; when injected at low concentration (2 mg IgG/ml in the injection solution), the antibody binds to microtubules without changing their distribution in the cytoplasm. Injection of larger concentration of YL 1/2 (6 mg IgG/ml) induces the formation of microtubule bundles, and still higher concentrations cause the aggregation of microtubule bundles around the nucleus (greater than 12 mg IgG/ml).  相似文献   

11.
During cell division, eukaryotic cells assemble dynamic microtubule-based spindles to segregate replicated chromosomes. Rapid spindle microtubule turnover, likely derived from dynamic instability, has been documented in yeasts, plants and vertebrates. Less studied is concerted spindle microtubule poleward translocation (flux) coupled to depolymerization at spindle poles. Microtubule flux has been observed only in vertebrates, although there is indirect evidence for it in insect spermatocytes and higher plants. Here we use fluorescent speckle microscopy (FSM) to demonstrate that mitotic spindles of syncytial Drosophila embryos exhibit poleward microtubule flux, indicating that flux is a widely conserved property of spindles. By simultaneously imaging chromosomes (or kinetochores) and flux, we provide evidence that flux is the dominant mechanism driving chromosome-to-pole movement (anaphase A) in these spindles. At 18 degrees C and 24 degrees C, separated sister chromatids moved poleward at average rates (3.6 and 6.6 microm/min, respectively) slightly greater than the mean rates of poleward flux (3.2 and 5.2 microm/min, respectively). However, at 24 degrees C the rate of kinetochore-to-pole movement varied from slower than to twice the mean rate of flux, suggesting that although flux is the dominant mechanism, kinetochore-associated microtubule depolymerization contributes to anaphase A.  相似文献   

12.
13.
Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin filaments in the oocyte cytoplasm. capu and spire mutants lack this mesh, whereas overexpressed truncated Cappuccino stabilizes the mesh in the presence of Latrunculin A and partially rescues spire mutants. Spire overexpression cannot rescue capu mutants, but prevents actin mesh disassembly at stage 10B and blocks late cytoplasmic streaming. We also show that the actin mesh regulates microtubules indirectly, by inhibiting kinesin-dependent cytoplasmic flows. Thus, the Capu pathway controls alternative states of the oocyte cytoplasm: when active, it assembles an actin mesh that suppresses kinesin motility to maintain a polarized microtubule cytoskeleton. When inactive, unrestrained kinesin movement generates flows that wash microtubules to the cortex.  相似文献   

14.
An antibody against cathepsin L-like protease (AACLP) was injected into one cell of 2-celled Xenopus embryos. The blastopores of AACLP-injected embryos either did not invaginate or failed to complete invagination. As a result of this failure to complete gastrulation, the body axes could not form normally and tail bud stage embryos were bent dorsally. Embryos injected with a control antibody (CA) developed normally through the tadpole stage. Mesodermal induction was not inhibited in embryos exhibiting this AACLP-induced gastrulation defect, but the mesodermal structure of these embryos was organized incorrectly due to the defective gastrulation during the early stages.  相似文献   

15.
An oligodeoxynucleotide probe (GSB-532) specific for green sulfur bacteria was developed. Highly stringent hybridization conditions were established using whole cells of Chlorobium limicola DSM249 immobilized on glass slides. At a formamide concentration of 10%, the optimum specificity was reached at 47 °C. When a conventional fixation procedure was used, a conspicuous autofluorescence developed within the cells. This autofluorescence was due to the liberation of bacteriochlorophyll by the detergent Triton X-100 and a subsequent conversion to bacteriopheophytin and related compounds. The signal-to-noise ratio could be increased by a final dehydration of the samples with methanol. Finally, the method was adapted to the hybridization of natural samples collected on polycarbonate membrane filters. In situ hybridization of pure cultures, various enrichments, and natural samples from the chemocline of a freshwater lake confirmed that probe GSB-532 hybridized exclusively to cells of green sulfur bacteria. Our protocol allows the highly specific detection of green sulfur bacteria in water samples and a rapid screening of natural bacterial communities. Employing probe GSB-532, the phylogenetic affiliation of the epibionts in “Chlorochromatium aggregatum” and “Pelochromatium roseum” could be demonstrated for the first time. Received: 26 October 1998 / Accepted: 7 January 1999  相似文献   

16.
Argonaute proteins are essential components of the molecular machinery that drives RNA silencing. In Drosophila, different members of the Argonaute family of proteins have been assigned to distinct RNA silencing pathways. While Ago1 is required for microRNA function, Ago2 is a crucial component of the RNA-induced silencing complex in siRNA-triggered RNA interference. Drosophila Ago2 contains an unusual amino-terminus with two types of imperfect glutamine-rich repeats (GRRs) of unknown function. Here we show that the GRRs of Ago2 are essential for the normal function of the protein. Alleles with reduced numbers of GRRs cause specific disruptions in two morphogenetic processes associated with the midblastula transition: membrane growth and microtubule-based organelle transport. These defects do not appear to result from disruption of siRNA-dependent processes but rather suggest an interference of the mutant Ago2 proteins in an Ago1-dependent pathway. Using loss-of-function alleles, we further demonstrate that Ago1 and Ago2 act in a partially redundant manner to control the expression of the segment-polarity gene wingless in the early embryo. Our findings argue against a strict separation of Ago1 and Ago2 functions and suggest that these proteins act in concert to control key steps of the midblastula transition and of segmental patterning.  相似文献   

17.
We have studied the morphology of nuclei in Drosophila embryos during the syncytial blastoderm stages. Nuclei in living embryos were viewed with differential interference-contrast optics; in addition, both isolated nuclei and fixed preparations of whole embryos were examined after staining with a DNA-specific fluorescent dye. We find that: (a) The nuclear volumes increase dramatically during interphase and then decrease during prophase of each nuclear cycle, with the magnitude of the nuclear volume increase being greatest for those cycles with the shortest interphase. (b) Oxygen deprivation of embryos produces a rapid developmental arrest that is reversible upon reaeration. During this arrest, interphase chromosomes condense against the nuclear envelope and the nuclear volumes increase dramatically. In these nuclei, individual chromosomes are clearly visible, and each condensed chromosome can be seen to adhere along its entire length to the inner surface of the swollen nuclear envelope, leaving the lumen of the nucleus devoid of DNA. (c) In each interphase nucleus the chromosomes are oriented in the "telophase configuration," with all centromeres and all telomeres at opposite poles of the nucleus; all nuclei at the embryo periphery (with the exception of the pole cell nuclei) are oriented with their centromeric poles pointing to the embryo exterior.  相似文献   

18.
Skeletal muscle F-actin and smooth muscle tropomyosin separately labeled with the fluorescent reporter group 5-iodoacetamidofluorescein (5-IAF) were further purified to yield G-actin fully competent to polymerize and tropomyosin able to bind specifically to F-actin. The two fluorescent proteins (dye content of 0.4–0.5 moles/mole of protein) were microinjected into tissue culture cells and their intracellular distribution was followed by TV image intensification. Fluorescent actin is found in the stress fibers and in the lamellopodia and ruffling edges of the cells. In addition a general cytoplasmic fluorescence is observed as well as fluorescent patches, which could be actin paracrystals. In contrast tropomyosin is not incorporated into ruffles although it is clearly seen along the stress fibers and gives rise to general cytoplasmic fluorescence. Control experiments using fluorescent serum albumin show no specific visualization of either stress fibers or ruffles. The specificity of the incorporation of the fluorescently labeled contractile proteins into the microfilament structures is further documented by the preparation of detergent resistant cytoskeletons which retain actin and tropomyosin in the appropriate structures but are devoid of fluorescent serum albumin. In addition the distribution of the contractile proteins in the living cells is affected by the microfilament specific drugs phalloidin and cytochalasin B (CB). The results obtained on live cells are in excellent agreement with conclusions drawn from immunofluorescence microscopical observations on fixed cells. In addition they directly prove the rather obvious point that contractile proteins are constantly rearranged in tissue culture cells.  相似文献   

19.
The first event of Drosophila gastrulation is the formation of the ventral furrow. This process, which leads to the invagination of the mesoderm, is a classical example of epithelial folding. To understand better the cellular changes and dynamics of furrow formation, we examined living Drosophila embryos using three-dimensional time-lapse microscopy. By injecting fluorescent markers that visualize cell outlines and nuclei, we monitored changes in cell shapes and nuclear positions. We find that the ventral furrow invaginates in two phases. During the first 'preparatory' phase, many prospective furrow cells in apparently random positions gradually begin to change shape, but the curvature of the epithelium hardly changes. In the second phase, when a critical number of cells have begun to change shape, the furrow suddenly invaginates. Our results suggest that furrow formation does not result from an ordered wave of cell shape changes, contrary to a model for epithelial invagination in which a wave of apical contractions causes invagination. Instead, it appears that cells change their shape independently, in a stochastic manner, and the sum of these individual changes alters the curvature of the whole epithelium.  相似文献   

20.
One of the first signs of cell differentiation in the Drosophila melanogaster embryo occurs 3 h after fertilization, when discrete groups of cells enter their fourteenth mitosis in a spatially and temporally patterned manner creating mitotic domains (Foe, V. E. and G. M. Odell, 1989, Am. Zool. 29:617-652). To determine whether cell residency in a mitotic domain is determined solely by cell position in this early embryo, or whether cell lineage also has a role, we have developed a technique for directly analyzing the behavior of nuclei in living embryos. By microinjecting fluorescently labeled histones into the syncytial embryo, the movements and divisions of each nucleus were recorded without perturbing development by using a microscope equipped with a high resolution, charge-coupled device. Two types of developmental maps were generated from three-dimensional time-lapse recordings: one traced the lineage history of each nucleus from nuclear cycle 11 through nuclear cycle 14 in a small region of the embryo; the other recorded nuclear fate according to the timing and pattern of the 14th nuclear division. By comparing these lineage and fate maps for two embryos, we conclude that, at least for the examined area, the pattern of mitotic domain formation in Drosophila is determined by the position of each cell, with no effect of cell lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号