首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将水培后盆栽的花生幼苗,置于培养箱42℃高温培养,定时测定幼苗叶光合速率、叶绿素含量和叶绿体Ca2+-ATPase、Mg2+-ATPase的相对活性,并观察幼叶细胞内Ca2+分布的变化。试验结果表明:高温胁迫过程中,光合速率及叶绿素含量都随处理时间的延伸而下降,并呈显著正相关;叶绿体Ca2+-ATPase和Mg2+-ATPase高温胁迫过程中相对活性呈先升后降趋势,Ca2+-ATPase热敏性高于Mg2+-ATPase;高温胁迫过程中,Ca2+具有从胞外转运到胞质内和叶绿体中的趋势,Ca2+能够稳定高温胁迫下叶肉细胞膜和叶绿体的超微结构。  相似文献   

2.
There is increasing evidence to suggest that Ca2+-calmodulin dependent protein kinase (CaMK) regulates the sarcoplasmic reticulum (SR) function and thus plays an important role in modulating the cardiac performance. Because intracellular Ca2+-overload is an important factor underlying cardiac dysfunction in a heart disease, its effect on SR CaMK was examined in the isolated rat heart preparations. Ca2+-depletion for 5 min followed by Ca2+-repletion for 30 min, which is known to produce intracellular Ca2+-overload, was observed to attenuate cardiac function as well as SR Ca2+-uptake and Ca2+-release activities. Attenuated SR function in the heart was associated with reduced CaMK phosphorylation of the SR Ca2+-cycling proteins such as Ca2+-release channel, Ca2+-pump ATPase, and phospholamban, decreased CaMK activity, and depressed levels of SR Ca2+-cycling proteins. These results indicate that alterations in cardiac performance and SR function following the occurrence of intracellular Ca2+-overload may partly be due to changes in the SR CaMK activity.  相似文献   

3.
Nitric oxide synthesis and signalling in plants   总被引:10,自引:0,他引:10  
As with all organisms, plants must respond to a plethora of external environmental cues. Individual plant cells must also perceive and respond to a wide range of internal signals. It is now well-accepted that nitric oxide (NO) is a component of the repertoire of signals that a plant uses to both thrive and survive. Recent experimental data have shown, or at least implicated, the involvement of NO in reproductive processes, control of development and in the regulation of physiological responses such as stomatal closure. However, although studies concerning NO synthesis and signalling in animals are well-advanced, in plants there are still fundamental questions concerning how NO is produced and used that need to be answered. For example, there is a range of potential NO-generating enzymes in plants, but no obvious plant nitric oxide synthase (NOS) homolog has yet been identified. Some studies have shown the importance of NOS-like enzymes in mediating NO responses in plants, while other studies suggest that the enzyme nitrate reductase (NR) is more important. Still, more published work suggests the involvement of completely different enzymes in plant NO synthesis. Similarly, it is not always clear how NO mediates its responses. Although it appears that in plants, as in animals, NO can lead to an increase in the signal cGMP which leads to altered ion channel activity and gene expression, it is not understood how this actually occurs.
NO is a relatively reactive compound, and it is not always easy to study. Furthermore, its biological activity needs to be considered in conjunction with that of other compounds such as reactive oxygen species (ROS) which can have a profound effect on both its accumulation and function. In this paper, we will review the present understanding of how NO is produced in plants, how it is removed when its signal is no longer required and how it may be both perceived and acted upon.  相似文献   

4.
In olfactory receptor cells, it is well established that cyclic AMP (cAMP) and inositol-1,4,5-trisphosphate (IP(3)) act as second messengers during odor responses. In previous studies, we have shown that cAMP-increasing odorants induce odor responses even after complete desensitization of the cAMP-mediated pathway. These results suggest that at least one cAMP-independent pathway contributes to the generation of odor responses. In an attempt to identify a novel second messenger, we investigated the possible role of cyclic ADP-ribose (cADPR) in olfactory transduction. Turtle olfactory receptor cells were isolated using an enzyme-free procedure and loaded with fura-2/AM. The cells responded to dialysis with cADPR with an inward current and an increase of the intracellular Ca(2+) concentration, [Ca(2+)](i). Flooding of cells with 100 microM cADPR from the pipette also induced an inward current without changes in [Ca(2+)](i) in Na(+)-containing and Ca(2+)-free Ringer solution. In an Na(+)-free and Ca(2+)-containing Ringer solution, cADPR induced only a small inward current with a concomitant increase in [Ca(2+)](i). Inward currents and increases in [Ca(2+)](i) induced by cADPR were completely inhibited by removal of both Na(+) and Ca(2+) from the outer solution. The experiments suggest that cADPR activates a cation channel at the plasma membrane, allowing inflow of Na(+) and Ca(2+) ions. The magnitudes of the inward current responses to cAMP-increasing odorants were greatly reduced by prior dialyses of a high concentration of cADPR or 8-bromo-cyclic ADP-ribose (8-Br-cADPR), an antagonist. It is possible that the cADPR-dependent pathway contributes to the generation of olfactory responses.  相似文献   

5.
Calcium in plants   总被引:29,自引:0,他引:29  
Calcium is an essential plant nutrient. It is required for various structural roles in the cell wall and membranes, it is a counter-cation for inorganic and organic anions in the vacuole, and the cytosolic Ca2+ concentration ([Ca2+]cyt) is an obligate intracellular messenger coordinating responses to numerous developmental cues and environmental challenges. This article provides an overview of the nutritional requirements of different plants for Ca, and how this impacts on natural flora and the Ca content of crops. It also reviews recent work on (a) the mechanisms of Ca2+ transport across cellular membranes, (b) understanding the origins and specificity of [Ca2+]cyt signals and (c) characterizing the cellular [Ca2+]cyt-sensors (such as calmodulin, calcineurin B-like proteins and calcium-dependent protein kinases) that allow plant cells to respond appropriately to [Ca2+]cyt signals.  相似文献   

6.
Qifu MA  Rengel Z  Kuo J 《Annals of botany》2002,89(2):241-244
Aluminium (Al) toxicity in rye (Secale cereale L.), an Al-resistant crop, was examined by measuring root elongation and cytoplasmic free activity of calcium ([Ca2+]cyt) in intact root apical cells. Measurement of [Ca2+]cyt, was achieved by loading a Ca2+-sensitive fluorescent probe. Fluo-3/AM ester, into root apical cells followed by detection of intracellular fluorescence using a confocal laser scanning microscope. After 20 min of exposure to 50 microM Al (pH 4-2) a slight increase in [Ca2+]cyt of root apical cells was observed, while the response of [Ca2+]cyt to 100 microM Al (pH 4.2) was faster and larger ([Ca2+]cyt increased by 46% in 10 min). Increases in [Ca2+]cyt were correlated with inhibition of root growth, generally measurable after 2 h. Addition of 400 microM malic acid (pH 4.2) largely ameliorated the effect of 100 microM Al on [Ca2+]cyt in root apical cells and protected root growth from Al toxicity. These results suggest that an increase in [Ca2+]cyt in root apical cells in rye is an early effect of Al toxicity and is followed by the secondary effect on root elongation.  相似文献   

7.
Respiring rat liver mitochondria are known to spontaneously release the Ca2+ taken up when they have accumulated Ca2+ over a certain threshold, while Sr2+ and Mn2+ are well tolerated and retained. We have studied the interaction of Sr2+ with Ca2+ release. When Sr2+ was added to respiring mitochondria simultaneously with or soon after the addition of Ca2+, the release was potently inhibited or reversed. On the other hand, when Sr2+ was added before Ca2+, the release was stimulated. Ca2+-induced mitochondrial damage and release of accumulated Ca2+ is generally believed to be due to activation of mitochondrial phospholipase A (EC 3.1.1.4.) by Ca2+. However, isolated mitochondrial phospholipase A activity was little if at all inhibited by Sr2+. The Ca2+ -release may thus be triggered by some Ca2+ -dependent function other than phospholipase.  相似文献   

8.
9.
In the breast tumor cell line MCF-7, extracellular nucleotides induce transient elevations in intracellular calcium concentration ([Ca(2+)](i)). In this study we show that stimulation with ATP or UTP sensitizes MCF-7 cells to mechanical stress leading to an additional transient Ca(2+) influx. ATP> or =ATPgamma-S> or =UTP>ADP=ADPbeta-S elevate [Ca(2+)](i), proving the presence of P2Y(2)/P2Y(4) purinergic receptor subtypes. In addition, cell stimulation with ATP, ATPgamma-S or UTP but not ADPbeta-S induced the phosphorylation of ERK1/2, p38 and JNK1/2 mitogen activated protein kinases (MAPKs). The use of Gd(3+), La(3+) or a Ca(2+)-free medium, inhibited ATP-dependent stress activated Ca(2+) (SAC) influx, but had no effect on MAPK phosphorylation. ATP-induced activation of MAPKs was diminished by two PI-PLC inhibitors and an IP(3) receptor antagonist. These results evidence an ATP-sensitive SAC influx in MCF-7 cells and indicate that phosphorylation of MAPKs by ATP is dependent on PI-PLC/IP(3)/Ca(2+)(i) release but independent of SAC influx in these cells, differently to other cell types.  相似文献   

10.
《Autophagy》2013,9(11):1710-1719
Calcium (Ca2+) has long been known as a ubiquitous intracellular second messenger, exploited by cells to control processes as diverse as development, proliferation, learning, muscle contraction and secretion. The spatial and temporal patterns of these Ca2+-associated signals, as well as their amplitude, is precisely controlled to create gradients of the ion, varying considerably depending on cell type and function. Tuning of intracellular Ca2+ is achieved in part by the buffering role of mitochondria, whose unperturbed function is essential for maintaining cellular energy balance. Quality of mitochondria is ensured by the process of targeted autophagy or mitophagy, which depends on a molecular cascade driving the catabolic process of autophagy toward damaged or deficient organelles for elimination via the lysosomal pathway. Nonspecific and targeted autophagy are highly regulated processes fundamental to cell growth and tissue homeostasis, allowing resources to be reallocated in nutrient-deprived cells as well as being instrumental in the repair of damaged organelles or the elimination of those in excess. Given the role of Ca2+ signaling in many fundamental cellular processes requiring precise regulation, the involvement of Ca2+ in autophagy is still somewhat ill-defined, and only in the past few years has evidence emerged linking the two. This mini-review aims to summarize recent work implicating Ca2+ as an important regulator of autophagy, outlining a role for Ca2+ that may be even more critical in the regulation of targeted mitochondrial autophagy.  相似文献   

11.
In order to identify defects in Na+-Ca2+ exchange and Ca2+-pump systems in cardiomyopathic hearts, the activities of sarcolemmal Na+-dependent Ca2+ uptake, Na+-induced Ca2+ release, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase were examined by employing cardiomyopathic hamsters (UM-X7.1) and catecholamine-induced cardiomyopathy produced by injecting isoproterenol into rats. The rates of Na+-dependent Ca2+ uptake, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase activities of sarcolemmal vesicles from genetically-linked cardiomyopathic as well as catecholamine-induced cardiomyopathic hearts were decreased without any changes in Na+-induced Ca2+-release. Similar results were obtained in Ca2+-paradox when isolated rat hearts were perfused for 5 min with a medium containing 1.25 mM Ca2+ following a 5 min perfusion with Ca2+-free medium. Although a 2 min reperfusion of the Ca2+-free perfused hearts depressed sarcolemmal Ca2+-pump activities without any changes in Na+-induced Ca2+-release, Na+-dependent Ca2+ uptake was increased. These results indicate that alterations in the sarcolemmal Ca2+-efflux mechanisms may play an important role in cardiomyopathies associated with the development of intracellular Ca2+ overload.  相似文献   

12.
Arachidonic acid (AA) plays important physiological or pathophysiological roles. Here, we show in cultured rat astrocytes that: (i) endothelin-1 or thapsigargin (Tg) induces store-depleted activated Ca2+ entry (CCE), which is inhibited by 2-aminoethoxydiphenyl borane (2-APB) or La3+; (ii) AA (10 μM) and other unsaturated fatty acids (8,11,14-eicosatrienoic acid and γ-linoleic acid) have an initial inhibitory effect on the CCE, due to AA- or fatty acid-induced internal acid load; (iii) after full activation of CCE, AA induces a further Ca2+ influx, which is not inhibited by 2-APB or La3+, indicating that AA activates a second Ca2+ entry pathway, which coexists with CCE; and (iv) Tg or AA activates two independent and co-existing non-selective cation channels and the Tg-induced currents are initially inhibited by addition of AA or weak acids. A possible pathophysiological effect of the AA-induced [Ca]i overload is to cause delayed cell death in astrocytes.  相似文献   

13.
Soil salinity adversely affects plant growth, crop yield and the composition of ecosystems. Salinity stress impacts plants by combined effects of Na+ toxicity and osmotic perturbation. Plants have evolved elaborate mechanisms to counteract the detrimental consequences of salinity. Here we reflect on recent advances in our understanding of plant salt tolerance mechanisms. We discuss the embedding of the salt tolerance‐mediating SOS pathway in plant hormonal and developmental adaptation. Moreover, we review newly accumulating evidence indicating a crucial role of a transpiration‐dependent salinity tolerance pathway, that is centred around the function of the NADPH oxidase RBOHF and its role in endodermal and Casparian strip differentiation. Together, these data suggest a unifying and coordinating role for Ca2+ signalling in combating salinity stress at the cellular and organismal level.  相似文献   

14.
Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation.  相似文献   

15.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

16.
Regulatory role of prolactin (PRL) on Ca2+ mobilization in human mammary gland cell line MCF-7 was examined. Direct addition of PRL did not affect cytoplasmic Ca2+ concentration ([Ca2+]i); however, treatment with PRL for 24h significantly decreased the peak level and duration time of [Ca2+]i elevation evoked by ATP or thapsigargin (TG). Intracellular Ca2+ release by IP3 or TG in permeablized cells was not decreased after PRL-treatment, indicating that the Ca2+ release was not impaired by PRL treatment. Extracellular Ca2+ entry evoked by ATP or TG was likely to be intact, because entry of extracellular Ba2+ was not affected by PRL treatment. Among Ca2+-ATPases expressed in MCF-7 cells, we found significant increase of secretory pathway Ca2+-ATPase type 2 (SPCA2) mRNA in PRL-treated cells by RT-PCR experiments including quantitative RT-PCR. Knockdown of SPCA2 by siRNA in PRL-treated cells showed similar Ca2+ mobilization to that in PRL-untreated cells. The present results suggest that PRL facilitates Ca2+ transport into Golgi apparatus and may contribute the supply of Ca2+ to milk.  相似文献   

17.
Summary The relative contributions of the Na+/Ca2+ exchange and the plasma membrane Ca2+ pump to active Ca2+ efflux from stimulated rat pancreatic acini were studied. Na+ gradients across the plasma membrane were manipulated by loading the cells with Na+ or suspending the cells in Na+-free media. The rates of Ca2+ efflux were estimated from measurements of [Ca2+] i using the Ca2+-sensitive fluorescent dye Fura 2 and45Ca efflux. During the first 3 min of cell stimulation, the pattern of Ca2+ efflux is described by a single exponential function under control, Na+-loaded, and Na+-depleted conditions. Manipulation of Na+ gradients had no effect on the hormone-induced increase in [Ca2+] i . The results indicate that Ca2+ efflux from stimulated pancreatic acinar cells is mediated by the plasma membrane Ca2+ pump. The effects of several cations, which were used to substitute for Na+, on cellular activity were also studied. Choline+ and tetramethylammonium+ (TMA+) released Ca2+ from intracellular stores of pancreatic acinar, gastric parietal and peptic cells. These cations also stimulated enzyme and acid secretion from the cells. All effects of these cations were blocked by atropine. Measurements of cholecystokinin-octapeptide (CCK-OP)-stimulated amylase release from pancreatic acini, suspended in Na+, TMA+, choline+, or N-methyl-d-glucamine+ (NMG+) media containing atropine, were used to evaluate the effect of the cations on cellular function. NMG+, choline+, and TMA+ inhibited amylase release by 55, 40 and 14%, respectively. NMG+ also increased the Ca2+ permeability of the plasma membrane. Thus, to study Na+ dependency of cellular function, TMA+ is the preferred cation to substitute for Na+. The stimulatory effect of TMA+ can be blocked by atropine.  相似文献   

18.
Effects of endotoxin administration on the ATP-dependent Ca2+ transport in canine cardiac sarcolemma were investigated. The results show that the sidedness of the sarcolemmal vesicles was not affected but the ATP-dependent Ca2+ transport in cardiac sarcolemma was decreased by 22 to 46% (p < 0.05) at 4 h following endotoxin administration. The kinetic analysis indicates that the Vmax for ATP and for Ca2+ were decreased by 50% (p < 0.01) and 32% (p < 0.01), respectively, while the Km values for ATP and Ca2+ were not significantly affected after endotoxin administration. Magnesium (1–5 mM) stimulated while vanadate (0.25–3.0 M) inhibited the ATP-dependent Ca2+ transport, but the Mg2+-stimulated and the vanadate-inhibitable activities remained significantly lower in the endotoxin-treated animals. These data demonstrate that endotoxin administration impairs the ATP-dependent Ca2+ transport in canine cardiac sarcolemma and that the impairment is associated with a mechanism not affecting the affinity towards ATP and Ca2+. Additional experiments show that the Ca2+ sensitivity of the Ca2+-ATPase activity was indifferent between the control and endotoxic groups suggesting that endotoxic injury impairs Ca2+ pumping without affecting Ca2+-ATPase activity. Since sarcolemmal ATP-dependent Ca2+ transport plays an important role in the regulation of cytosolic Ca2+ homeostasis, an impairment in the sarcolemmal ATP-dependent Ca2+ transport induced by endotoxin administration may have a pathophysiological significance in contributing to the development of myocardial dysfunction in endotoxin shock.  相似文献   

19.
Ca2+ transport in kidney has gained considerable attention in the recent past. Our laboratory has been involved in understanding the regulatory mechanisms underlying Ca2+ transport in the kidney across the renal basolateral membrane. We have shown that ANP, a cardiac hormone, mediates its biological functions by acting on its receptors in the kidney basolateral membrane. Furthermore, it has been established that ANP receptors are coupled with Ca2+ ATPase, the enzyme that participates in the vectorial translocation of Ca2+ from the tubular lumen to the plasma. It is possible that a defect in the ANP-receptor-effector system in diabetes (under certain conditions such as hypertension) may be associated with abnormal Ca2+ homeostasis and the development of nephropathy. Accordingly, future studies are needed to establish this hypothesis.  相似文献   

20.
Several important conclusions have recently emerged fromin vitro studies on the resorptive cell of bone, the osteoclast. First, it has been established that osteoclast function is modulated locally, by changes in the local concentration of Ca2+ caused by hydroxyapatite dissolution. It is thought that activation by Ca2+ of a surface membrane Ca2+ receptor mediates these effects, hence providing a feedback control. Second, a number of molecules produced locally by the endothelial cell, with which the osteoclast is in intimate contact, have been found to affect bone resorption profoundly. For instance, the autocoid nitric oxide strongly inhibits bone resorption. Finally, reactive oxygen species have been found to aid bone resorption and enhance osteoclastic activity directly. Here, we will attempt to integrate these control mechanisms into a unified hypothesis for the local control of bone resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号