首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phenomenon of serovariation in the capsule antigen of the plague pathogen has been found. The synthesis of FI-serovar is determined by the expression of the caf1M gene. The damages in the caf1M gene structure result in production of the FI1 and FI2 serotypes. Expression of the caf1M gene does not affect the secretion of FI-antigen.  相似文献   

2.
3.
A mutant form of the type I regulatory subunit (RI) of cAMP-dependent protein kinase has been cloned and sequenced (Clegg, C. H., Correll, L. A., Cadd, G. C., and McKnight, G. S. (1987) J. Biol. Chem. 262, 13111-13119) which contains two point mutations in the site B cAMP-binding site, a Gly to Asp at position this report, the effect of each independent mutation on the rate of dissociation of cAMP from RI, the cAMP-mediated activation of holoenzyme and the inducibility of cAMP-responsive genes has been characterized. Dissociation of cAMP from either recombinant wild type RI or the B1 mutant demonstrated biphasic kinetics, indicating two sites with different affinities for cAMP. Dissociation from the B2 subunit, however, was monophasic and very rapid indicating that site B had been destroyed and that the rate of dissociation from site A was increased. The cAMP activation constants (Ka) of the wild type and B1 holoenzymes were 40 and 188 nM, respectively, and demonstrated positive cooperativity, with Hill coefficients of 1.61 for the wild type and 1.67 for B1. The B2 holoenzyme required much greater concentrations of cAMP, 4.7 microM, for half-maximal activation and did not display positive cooperativity. Constitutive expression in mouse AtT20 pituitary cells of the B1 mutant resulted in only a small shift in the Ka for kinase activation in these cells compared with B2 expression which increased the Ka by more than 100-fold. Transient expression of the B1 subunit in human JEG-3 choriocarcinoma cells inhibited forskolin activation of a cAMP-responsive promoter by 35% whereas similar expression of the B2 RI subunit inhibited the response by 90%. These results suggest that the Gly to Asp mutation at amino acid 324 completely blocks cAMP binding to site B whereas the Arg to His mutation at position 332 causes a more subtle alteration in cAMP binding. Expression of either mutant RI in animal cells results in a dominant repression of cAMP-dependent protein kinase activity and cAMP-dependent protein kinase-mediated processes.  相似文献   

4.
A 14.4-kDa cAMP-binding fragment was generated during bacterial expression and purification of recombinant bovine cAMP-dependent protein kinase type I alpha regulatory subunit (RI alpha). The full-length RI alpha from which the fragment was derived contained a point mutation allowing its B domain to bind both cAMP and cGMP with high affinity while leaving its A domain highly cAMP selective. The NH2 terminus of the fragment was Ser-252, indicating that it encompassed the entire predicted B domain. Although the [3H]cAMP and [3H]cGMP exchange rates of the isolated B domain were increased relative to the B domain in intact RI alpha, the [3H]cAMP exchange rate was comparable to that of the B domain of full-length RI alpha containing an unoccupied A domain. A plasmid encoding only the isolated B domain was overexpressed in Escherichia coli, and a monomeric form of the B domain was purified that had identical properties to the proteolytically generated fragment, indicating that all of the elements for the high-affinity cAMP-binding B domain are contained within the 128 amino acid carboxyl terminus of the R subunit. Prolonged induction of the B domain in E. coli or storage of the purified protein resulted in the formation of a dimer that could be reverted to the monomer by incubation in 2-mercaptoethanol. Dimerization caused an approximate fivefold increase in the rate of cyclic nucleotide exchange relative to the monomer. The results show that an isolated cAMP-binding domain can function independently of any other domain structures of the R subunit.  相似文献   

5.
The cAMP-dependent protein kinase contains two different cAMP-binding sites referred to as the slow and fast sites. Mutation of Ala-334 to a threonine in the slow site of the bovine type I regulatory subunit created a site with marked increase in cGMP affinity without changing cAMP affinity (Shabb, J. B., Ng. L., Corbin, J. D. (1990) J. Biol. Chem. 265, 16031-16034). The corresponding fast site residue (Ala-210) was changed to a threonine by oligonucleotide-directed mutagenesis, and a double mutant containing a threonine in each site was also made. Holoenzymes were formed from native catalytic subunit and each recombinant regulatory subunit. The fast site mutant holoenzyme exhibited an improved cGMP activation constant and an impaired cAMP activation constant. The double mutant cGMP/cAMP selectivity was 200-fold greater than that of wild-type holoenzyme, making it as responsive to cGMP as native cGMP-dependent protein kinase. The increased intrinsic binding energies of mutated sites for cGMP were 2.7-3.0 kcal mol-1, consistent with the presence of an extra hydrogen bond. Cyclic nucleotide analog studies implied that this hydrogen bond was between the threonine hydroxyl and the 2-amino of cGMP. Comparisons of amino acid sequences and cyclic nucleotide specificities suggested that the Ala/Thr difference may also impart cAMP/cGMP binding selectivity to related proteins such as cyclic nucleotide-gated ion channels.  相似文献   

6.
The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.  相似文献   

7.
M S Zhao  Y He  C Zhang 《Genetika》1990,26(10):1876-1879
Function of the largest plasmid of Yersinia pestis was studied. Assay of four strains of highly virulent Y. pestis isolated from different natural sources demonstrated that the characters of endotoxin production, sugar and alcohol fermentation, nitrate reduction as well as requirement in nutrients are mediated by no Y. pestis plasmids. On the contrary, FI and FII antigens are determined by the largest plasmid in some strains and are chromosome-mediated in others. It may well be that the genes for these antigens are comprised within the transposon-like DNA fragment.  相似文献   

8.
The well-known second messenger cyclic adenosine monophosphate (cAMP) regulates the morphology and physiology of neurons and thus higher cognitive brain functions. The discovery of exchange protein activated by cAMP (Epac) as a guanine nucleotide exchange factor for Rap GTPases has shed light on protein kinase A (PKA)-independent functions of cAMP signaling in neural tissues. Studies of cAMP-Epac-mediated signaling in neurons under normal and disease conditions also revealed its diverse contributions to neurodevelopment, synaptic remodeling, and neurotransmitter release, as well as learning, memory, and emotion. In this mini-review, the various roles of Epac isoforms, including Epac1 and Epac2, highly expressed in neural tissues are summarized, and controversies or issues are highlighted that need to be resolved to uncover the critical functions of Epac in neural tissues and the potential for a new therapeutic target of mental disorders.  相似文献   

9.
Each protomer of the regulatory subunit dimer of cAMP-dependent protein kinase contains two tandem and homologous cAMP-binding domains, A and B, and cooperative cAMP binding to these two sites promotes holoenzyme dissociation. Several amino acid residues in the type I regulatory subunit, predicted to lie in close proximity to each bound cyclic nucleotide based on affinity labeling and model building, were replaced using recombinant techniques. The mutations included replacement of 1) Glu-200, predicted to hydrogen bond to the 2'-OH of cAMP bound to site A, with Asp, 2) Tyr-371, the site of affinity labeling with 8-N3-cAMP in site B, with Trp, and 3) Phe-247, the position in site A that is homologous to Tyr-371 in site B, with Tyr. Each mutation caused an approximate 2-fold increase in both the Ka(cAMP) and Kd(cAMP); however, the off-rates for cAMP and the characteristic pattern of affinity labeling with 8-N3-cAMP differed markedly for each mutant protein. Furthermore, these mutations affect the cAMP binding properties not only of the site containing the mutation, but of the adjacent nonmutated site as well, thus confirming that extensive cross-communication occurs between the two cAMP-binding domains. Photoaffinity labeling of the native R-subunit results in the covalent modification of two residues, Trp-260 and Tyr-371, by 8-N3-cAMP bound to sites A and B, respectively, with a stoichiometry of 1 mol of 8-N3-cAMP incorporated per mol of R-monomer (Bubis, J., and Taylor, S. S. (1987) Biochemistry 26, 3478-3486). A stoichiometry of 1 mol of 8-N3-cAMP incorporated per R-monomer was observed for each mutant regulatory subunit as well, even when 2 mol of 8-N3-cAMP were bound per R-monomer; however, the major sites of covalent modification were altered as follows: R(Y371/W), Trp-371; R(E200/D), Tyr-371, and R(F247/Y), Tyr-371.  相似文献   

10.
The recombinant plasmid pBS1 carrying a 2 kb SalGI fragment of Yersinia pestis pFra plasmid was constructed by insertion of the fragment into a vector plasmid pBR327. SalGI-BspRI 400 bp subfragment was recloned into a pBR322 vector plasmid. Open reading frame was found in the fragment by DNA sequencing technique. The subfragment designated F1-probe permits one to identify specifically the Yersinia pestis strains harbouring pFra plasmid, thus, differing them from closely related Yersiniea and other representatives of Enterobacteriaceae family.  相似文献   

11.
Cànaves JM  Leon DA  Taylor SS 《Biochemistry》2000,39(49):15022-15031
The regulatory (R) subunit of cAMP-dependent protein kinase (cAPK) is a multidomain protein with two tandem cAMP-binding domains, A and B. The importance of cAMP binding on the stability of the R subunit was probed by intrinsic fluorescence and circular dichroism (CD) in the presence and absence of urea. Several mutants were characterized. The site-specific mutants R(R209K) and R(R333K) had defects in cAMP-binding sites A and B, respectively. R(M329W) had an additional tryptophan in domain B. Delta(260-379)R lacked Trp260 and domain B. The most destabilizing mutation was R209K. Both CD and fluorescence experiments carried out in the presence of urea showed a decrease in cooperativity of the unfolding, which also occurred at lower urea concentrations. Unlike native R, R(R209K) was not stabilized by excess cAMP. Additionally, CD revealed significant alterations in the secondary structure of the R209K mutant. Therefore, Arg209 is important not only as a contact site for cAMP binding but also for the intrinsic structural stability of the full-length protein. Introducing the comparable mutation into domain B, R333K, had a smaller effect on the integrity and stability of domain A. Unfolding was still cooperative; the protein was stabilized by excess cAMP, but the unfolding curve was biphasic. The R(M329W) mutant behaved functionally like the native protein. The Delta(260-379)R deletion mutant was not significantly different from wild-type RIalpha in its stability. Consequently, domain B and the interaction between Trp260 and cAMP bound to site A are not critical requirements for the structural stability of the cAPK regulatory subunit.  相似文献   

12.
13.
Previously, we have reported a defect in the cAMP-dependent protein kinases (cAMP-PK) in psoriatic cells (i.e., a decrease in 8-azido-[32P]cAMP binding to the regulatory subunits and a decrease in phosphotransferase activity) which is rapidly reversed with retinoic acid (RA) treatment of these cells. This led us to examine a possible direct interaction between retinoids and the RI and RII regulatory subunits through retinoylation. Retinoylation of RI and RII present in normal and psoriatic human fibroblasts was analysed by [3H]RA treatment of these cells, followed either by chromatographic separation of the regulatory subunits or by their specific immunoprecipitation. These studies indicated that RI and RII can be retinoylated. [3H]RA labeling of the RII subunit was significantly (P < 0.005) greater in psoriatic fibroblasts (nine subjects; mean 7.47 relative units ± 1.37 SEM) compared to normal fibroblasts (eight subjects; mean 2.46 relative units ± 0.49 SEM). [3H]RA labeling of and the increase in 8-azido-[32P]-binding to the RI and RII subunit in psoriatic fibroblasts showed a similar time course. This suggests that the rapid effect of retinoic acid treatment to enhance 8-azido-[32P]-cAMP binding to the RI and RII in psoriatic fibroblasts may be due, in part, to covalent modification of the regulatory subunits by retinoylation. © 1996 Wiley-Liss, Inc.  相似文献   

14.
ATP-dependent protein kinase activities were detected in both membrane and cytoplasmic fractions from the oral pathogen Streptococcus mutans. Different polypeptides were phosphorylated by endogenous kinase(s) in the two fractions. In membranes, five phosphoproteins were detected with apparent masses of 82, 37, 22, 12, and 10 kilodaltons (KD). In cytoplasm, two major acid-stable phosphoproteins were found. One was identified as HPr of the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS), while the other had an apparent mass of 61 KD. Both of these proteins were phosphorylated on a seryl residue. Fructose 1,6-bisphosphate stimulated phosphorylation of HPr by the kinase and inhibited phosphorylation of the 61-KD protein. In contrast, fructose 1-phosphate, 2-phosphoglycerate, 3-phosphoglycerate, and dihydroxyacetone phosphate inhibited phosphorylation of HPr and stimulated phosphorylation of the 61-KD protein. Several other glycolytic intermediates as well as inorganic phosphate inhibited phosphorylation of either or both proteins. Preincubation of cytoplasm with PEP prior to incubation with ATP reduced the amount of phospho-(seryl)-HPr formed, but not that of the 61-KD phosphoprotein. The latter protein has not yet been identified but has properties that suggest that it may be the protein kinase itself. These results provide evidence for one or more soluble ATP-dependent protein kinases in S mutans that are regulated by glycolytic intermediates and that may play a role in the modulation of carbohydrate uptake and metabolism in this organism. A model for feedback regulation of sugar transport in S mutans, mediated by an allosterically regulated kinase, is presented.  相似文献   

15.
16.
Photoaffinity labeling with 8-azidoadenosine 3':5'-monophosphate is a highly selective method for probing the cAMP-binding sites of the regulatory subunits of cAMP-dependent protein kinase and for identifying specific residues that are in close proximity to the cAMP-binding sites. The cAMP-binding site of a mutant RI-subunit has been characterized here and contrasted to the native RI-subunit. This mutant RI-subunit was generated by oligonucleotide-directed muta-genesis and lacks the entire second cAMP-binding domain which includes both of the residues, Trp260 and Tyr371, that are photolabeled in the native RI-subunit. The mutant RI-subunit, nevertheless, is photoaffinity-labeled with high efficiency, and the residue covalently modified was identified as Tyr244. The position of Tyr244 based on a computer graphic model of cAMP-binding site A is proposed and correlated with the presumed locations of Tyr371 and Trp260 in the native R-subunit. Photoaffinity labeling also can be used to detect functional cAMP-binding sites following electrophoretic transfer of the denatured protein to nitrocellulose. Labeling of the immobilized protein on nitrocellulose required a functional cAMP-binding site A that can be photoaffinity-labeled in solution based on the following criteria. 1) The type I R-subunit is photolabeled, whereas the type II R-subunit is not. A primary feature which distinguishes these two R-subunits is that the RI-subunit is photolabeled at both sites A and B, whereas covalent modification of the RII-subunit occurs only at site B. 2) The truncated mutant of the RI-subunit which lacks the entire second cAMP-binding domain can be photolabeled on nitrocellulose. 3) A mutant RI-subunit which can no longer be photolabeled in site B is still photolabeled on nitrocellulose. 4) A mutation which abolished cAMP binding to site A also abolished photoaffinity labeling after transfer to nitrocellulose.  相似文献   

17.
A cytoplasmic cAMP-binding protein in Dictyostelium discoideum   总被引:2,自引:0,他引:2  
A cytoplasmic cAMP-binding protein from Dictyostelium discoideum was purified about 1200-fold. The binding protein is relatively specific for cAMP, but also binds some other adenine derivatives; it has a molecular weight of approximately 185,000 and an apparent KD of 1 μM cAMP. The highest level of cytoplasmic cAMP-binding activity is found in amoebae which have been starved for 0–2 hr. Amoebal extracts contain inhibitors of cAMP binding which are removed by chromatography through Sephacryl S200.  相似文献   

18.
《Insect Biochemistry》1985,15(6):835-844
Cyclic AMP (cAMP)-dependent regulation of in vitro phosphorylation of several proteins including a cAMP-binding protein was studied with crude membrane and cytosol fractions from Drosophila heads. Phosphorylation of at least seven distinct proteins was enhanced in the presence of cAMP. Interestingly, however, the phosphorylation of a 56 kDa protein was apparently reduced by cAMP in the membrane but not in the cytosol fraction. The following data strongly indicate that the 56 kDa phosphoprotein in both membrane and cytosol fractions is a cAMP-binding protein, very similar to the regulatory subunit (RII) of a mammalian cAMP-dependent protein kinase, and that its binding to cAMP makes this protein very susceptible to the action of phosphatases: (i) cAMP highly stimulated the dephosphorylation of the 56 kDa phosphoprotein by the endogenous phosphatase in the membrane fraction. (ii) The dephosphorylation of a similar 56 kDa phosphoprotein in the cytosol fraction by an exogenous, cAMP-independent, alkaline phosphatase was also highly stimulated by cAMP. (iii) The 56 kDa phosphoprotein was covalently bound to cAMP by u.v. irradiation. (iv) The alkaline-phosphatase treatment reversibly converted this phosphoprotein to a 53 kDa non-phosphorylated protein. (v) The 53 kDa protein was selectively bound to cAMP-agarose and subsequently eluted by cAMP and high salt. (vi) This protein served as a substrate for the catalytic subunit of a mammalian cAMP-dependent protein kinase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号