首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The half-life of trehalase and invertase at 65 and 60 C was found to be much greater when intact ascospores of Neurospora tetrasperma were heated, as compared with extracts. By contrast, no protection was afforded these enzymes when they were heated in intact conidia and mycelium of N. crassa or N. tetrasperma. The protective effect of ascospores for trehalase was further investigated by heating ascospore extracts before and after dialysis. The removal of small molecules by dialysis lowered the heat resistance of trehalase significantly in such extracts. When the dialysate from extracts of mycelium, conidia, or ascospores was added to dialyzed enzyme extracts, that from ascospores was by far the most active. However, the same dialysates had only a small protective effect on invertase. The addition of ashed dialysates did not protect trehalase, and trehalose and glucose protected less effectively than the dialysate.  相似文献   

2.
The breaking of dormancy in yeast ascospores by addition of glucose is associated with a sudden tenfold increase in the activity of trehalase. The rapid activation of trehalase is followed by a slower inactivation process which is greatly retarded in the presence of nitrogen sources and cycloheximide. When glucose is washed away from the spores after some time and the spores resuspended in glucose-free medium, the trehalase activity decreases sharply. Subsequent addition of new glucose partially reactivates the enzyme. The extent of reactivation decreases further with each subsequent activation/inactivation step. Changing the duration of the inactivation periods has no effect on this diminution of the reversibility. However, prolonging the duration of the activation step speeds up the loss of reversibility. On the other hand, addition of a nitrogen source or cycloheximide completely prevents the loss of reversibility. The results of the reversibility studies are in agreement with the phosphorylation mechanism which has been proposed for the underlying molecular process of trehalase activation. Apparently, they are also in agreement with proteolytic breakdown being responsible for the inactivation of trehalase after its initial activation. However, the effect of cycloheximide and nitrogen sources, at least in ascospores, does not appear to be due to inhibition or repression of protease synthesis, respectively, since the addition in the presence of glucose of a nitrogen source after trehalase inactivation immediately reactivates the enzyme completely.  相似文献   

3.
Summary Trehalase is a specific enzyme for the hydrolysis of trehalose, a storage carbohydrate of insect and microbial species. The enzyme is of rare occurrence among higher plants. In cultivated soil, trehalase activity (Ta) was linearly related to both the amount of soil and assay incubation time. Ta increased sharply in response to substrate concentration over the range of 0 to 2% (w/v); higher substrate levels, however, showed a reduced rate of increase. Soil trehalase activity increased proportionally with increased incubation temperature over the range of 20 to 50°C but declined sharply at temperatures above 50°C. Ta was maximal at pH 5.0 when 0.5M acetate or propionate buffers were used; however, activity diminished with increased ionic strength of the buffer. Based on these findings, a standard assay method for Ta was developed. The enzyme was extracted from soil and eluted from a Sephadex G 200 column as high molecular weight organic matter. Treatment of the extract with beta-glucosidase reduced the molecular weights of the elution fractions exhibiting Ta.  相似文献   

4.
Occurrence and distribution of trehalase were examined in cytoplasmic and cell wall fractions of cultured cells of morning-glory, soybean and persimmon. Also, some enzymatic properties and solubilization of the enzyme from cell walls were examined. Trehalase was present in both fractions of morning-glory and persimmon cells while trehalase was present only in the cytoplasmic fraction of soybean cells. Morning-glory trehalases in both fractions showed the same optimum pH at 5.5, while persimmon trehalases in both fractions showed the same optimum pH at 6.0. Soybean enzyme in the cytoplasmic fraction showed two optimum activities at 4.0 and 6.5. Morning-glory cell wall bound trehalase was solubilized with various IM salts at about 70 to 75%. Also, the enzyme was solubilized with various buffers and the solubilization ratio increased with increasing in pH of a same series buffer. After multiple extractions with IM NaCl, about 15% of the original trehalase activity still remained in cell walls. On the other hand, Triton X-100 and the substrate, trehalose, at the various concentrations did not release trehalase from cell walls. Invertase and cellobiase solubilized from morning-glory cell walls were re-adsorbed to the cell walls. However, readsorption of trehalase to cell walls has not yet been attained. Based on these results, physiological roles of plant cell wall-bound trehalase were discussed.  相似文献   

5.
Addition of glucose to yeast ascospores, glucose-grown vegetative cells from the stationary growth-phase or acetate-grown vegetative cells from the logarithmic growth-phase induces a rapid tenfold increase in the activity of trehalase. Trehalase activation is followed by a period of slow inactivation. It was possible to reverse the inactivation in the presence of glucose in all cell types immediately and completely by subsequent addition of a nitrogen source. This reactivation by nitrogen sources is in disagreement with proteolytic breakdown being responsible for trehalase inactivation in the presence of glucose. The addition of glucose induced in all cell types a rapid transient increase of the cellular cyclic-AMP content. In ascospores the increase of the cyclic-AMP level was about twofold, in glucose-grown stationary-phase vegetative cells four- to fivefold and in acetate-grown vegetative cells about sevenfold. Subsequent addition in the presence of glucose of a nitrogen source caused a new twofold increase of the cyclic-AMP level in ascospores. In the other two cell types however addition of a nitrogen source after the initial transient increase of the cyclic-AMP level did not produce a significant new increase. Although the data obtained for ascospores at first seemed to confirm the crucial role of the increase in the cyclic-AMP level for the activation of trehalase, the data obtained afterwards for vegetative cells indicated that it is possible to activate trehalase in yeast without a concomitant increase of the total cellular cyclic-AMP content.Abbreviations Mes 4-Morpholineethanesulfonic acid - Tris tris(hydroxymethyl)-aminomethane  相似文献   

6.
Summary The trehalase content of different yeasts varies widely. A strain ofCandida tropicalis was found to be the best source of this enzyme among the yeasts tested. The trehalase activity in this yeast could be increased 8.5 times by growing it on trehalose rather than glucose. Thus trehalase is an adaptive enzyme inC. tropicalis. It was found that the amount of trehalase which could be solubilized increased with increasing pH during autolysis of the cells, none being released from the cell debris at pH 4.5 and most at pH 6.3. Some evidence was obtained to show that the solubilization was caused by an enzyme. The stability of trehalase under various conditions was studied. A partial purification was achieved by precipitation with 40% ethanol at a temperature of −18°C. The maximum temperature of the enzyme was 48°C., and the optimum pH ranged from 4.1 to 5.3  相似文献   

7.
Trehalase was studied in Schizosaccharomyces pombe cells growing vegetatively on minimal medium and in sporulating cultures. Acid trehalase activity, measured at pH 4.2, was absent in vegetative cells and occurred only in asci, indicating that this activity represented the sporulation-specific trehalase reported previously. In contrast, neutral trehalase, measured at pH 6.0, was constitutively present in vegetative cells during the exponential and stationary growth phase as well as in asci. In vegetative cells, neutral trehalase did not sediment with cell walls, suggesting a cytoplasmic localization. Its activity increased ten-fold when growing cells were subjected to heat treatment of 2 h. Neutral trehalase from heat-treated cells had a pH optimum of 6.0 and was almost completely inhibited by 3 mM ZnCl2. Acid trehalase activity could be measured in intact asci, indicating that it is localized in the ascus cell walls, while neutral trehalase was not detectable in intact asci and appeared to be present primarily in the walls of ascospores and in the ascus epiplasm.  相似文献   

8.
Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.  相似文献   

9.
Trehalose and sucrose, two important anti-stress non-reducing natural disaccharides, are catabolized by two enzymes, namely trehalase and invertase respectively. In this study, a 175 kDa enzyme protein active against both substrates was purified from wild type Candida utilis and characterized in detail. Substrate specificity assay and activity staining revealed the enzyme to be specific for both sucrose and trehalose. The ratio between trehalase and invertase activity was found to be constant at 1:3.5 throughout the entire study. Almost 40-fold purification and 30% yield for both activities were achieved at the final step of purification. The presence of common enzyme inhibitors, thermal and pH stress had analogous effects on its trehalase and invertase activity. Km values for two activities were similar while Vmax and Kcat also differed by a factor of 3.5. Competition plot for both substrates revealed the two activities to be occurring at the single active site. N-terminal sequencing and MALDI-TOF data analysis revealed higher similarity of the purified protein to previously known neutral trehalases. While earlier workers mentioned independent purification of neutral trehalase or invertase from different sources, the present study reports the purification of a single protein showing dual activity.  相似文献   

10.
Rat intestinal brush border trehalase (EC 3.2.1.28) solubilized by Triton X-100 or Emulphogen BC 720 has been purified almost to homogeneity in a five steps procedure including DEAE cellulose, Sephadex G-200, preparative flat bed electrofocusing and hydroxylapatite. The apparent molecular weight was estimated to be about 65,500 daltons by mannitol density gradient ultracentrifugation. The optimum pH of the enzyme was between 5.5 and 5.7 in phosphate, maleate or citrate buffers. The apparent Km for trehalose was found to be 10 mM in maleate buffer pH 6.0. The isoelectric point was 4.9. Tris, P-aminophenylglucoside, sucrose and maltose are fully competitive inhibitors with Kis of 2.2, 1.8, 7.7 and 170 mM, respectively. The inhibition by Phloridzin appeared to be of the mixed type with a Ki of 1.7 mM. Trehalase is heat stable up to 50 degrees C and the activation energy is 10.96 kcal/mol. Schiff's staining on polyacrylamide gel and interaction with Con-A-Sepharose indicate that rat trehalase is a glycoprotein.  相似文献   

11.
Neutral trehalase was purified from stationary yeast ABYS1 mutant cells deficient in the vacuolar proteinases A and B and the carboxypeptidases Y and S. The purified electrophoretically homogeneous preparation of phosphorylated neutral trehalase exhibited a molecular mass of 160,000 Da on nondenaturing gel electrophoresis and of 80,000 Da on sodium dodecyl sulfate-gel electrophoresis. Maximal activity (114 mumol of trehalose min-1 x mg-1 at 37 degrees C) was observed at pH 6.8-7.0. The apparent Km for trehalose was 34.5 mM. Among seven oligosaccharides studied, the enzyme formed glucose only from trehalose. Neutral trehalase is located in the cytosol. A polyclonal rabbit antiserum raised against neutral trehalase precipitates the enzyme in the presence of protein A. The antiserum does not react with acid trehalase. Dephosphorylation by alkaline phosphatase from Escherichia coli of the active phosphorylated enzyme is accompanied by greater than or equal to 90% inactivation. Rephosphorylation by incubation with the catalytic subunit of beef heart protein kinase is accompanied by reactivation and incorporation of 0.85 mol of phosphate/mol subunit (80,000 Da). The phosphorylated amino acid residue was identified as phosphoserine.  相似文献   

12.
Trehalose is a nonreducing disaccharide of glucose (alpha,alpha-1,1-glucosyl-glucose) that is essential for growth and survival of mycobacteria. These organisms have three different biosynthetic pathways to produce trehalose, and mutants devoid of all three pathways require exogenous trehalose in the medium in order to grow. Mycobacterium smegmatis and Mycobacterium tuberculosis also have a trehalase that may be important in controlling the levels of intracellular trehalose. In this study, we report on the purification and characterization of the trehalase from M. smegmatis, and its comparison to the trehalase from M. tuberculosis. Although these two enzymes have over 85% identity throughout their amino acid sequences, and both show an absolute requirement for inorganic phosphate for activity, the enzyme from M. smegmatis also requires Mg(2+) for activity, whereas the M. tuberculosis trehalase does not require Mg(2+). The requirement for phosphate is unusual among glycosyl hydrolases, but we could find no evidence for a phosphorolytic cleavage, or for any phosphorylated intermediates in the reaction. However, as inorganic phosphate appears to bind to, and also to greatly increase the heat stability of, the trehalase, the function of the phosphate may involve stabilizing the protein conformation and/or initiating protein aggregation. Sodium arsenate was able to substitute to some extent for the sodium phosphate requirement, whereas inorganic pyrophosphate and polyphosphates were inhibitory. The purified trehalase showed a single 71 kDa band on SDS gels, but active enzyme eluted in the void volume of a Sephracryl S-300 column, suggesting a molecular mass of about 1500 kDa or a multimer of 20 or more subunits. The trehalase is highly specific for alpha,alpha-trehalose and did not hydrolyze alpha,beta-trelalose or beta,beta-trehalose, trehalose dimycolate, or any other alpha-glucoside or beta-glucoside. Attempts to obtain a trehalase-negative mutant of M. smegmatis have been unsuccessful, although deletions of other trehalose metabolic enzymes have yielded viable mutants. This suggests that trehalase is an essential enzyme for these organisms. The enzyme has a pH optimum of 7.1, and is active in various buffers, as long as inorganic phosphate and Mg(2+) are present. Glucose was the only product produced by the trehalase in the presence of either phosphate or arsenate.  相似文献   

13.
The presence of trehalase and trehalose phosphorylase in L3 and L4 larvae of Anisakis simplex was demonstrated. The activity of trehalase and trehalose phosphorylase in L3 larvae was 6 and 10 times higher, respectively, than in L4 larvae. This suggests that trehalose metabolism is more important for L3 than LA larvae. Trehalases of L3 and L4 differ in their characteristics. The enzyme of L3 was present mainly in the lysosomes and cytosol, whereas in L4 the highest enzyme activity was measured in the lysosomal fraction. Trehalase activity was increased by 29% in L3 and 55% in L4 with the addition of Mg2+ (0.1 mmol). Tris inhibited trehalase in L3 larvae by 42% and in L4 by 25%. The enzymes differed in their reaction to EDTA, CaCl2, ZnCl2, and CH2ICOOH (all 0.1 mmol). High activity of trehalase from L3 larvae was measured within the pH range of 5.0 to 6.5, with an optimum pH of 6.1. The trehalase was a thermally tolerant enzyme from 25 C to 60 C. The enzyme lost half of its activity after preincubation without substrate above 75 C. The paper also discusses the similarities and differences in characteristics of trehalase from A. simplex larvae and presents the comparison to enzymes from other nematodes.  相似文献   

14.
The genome of the fission yeast Schizosaccharomyces pombe lacks sequence homologs to ath1 genes coding for acid trehalases in other yeasts or filamentous fungi. However, acid trehalase activity is present at the spore stage in the life cycle of the fission yeast. The enzyme responsible for this activity behaves as a surface enzyme covalently linked to the spore cell walls in both wild-type and ntp1 mutant strains devoid of neutral trehalase. Lytic treatment of particulated cell wall fractions allowed the solubilization of the enzyme into an active form. We have characterized this soluble enzyme and found that its kinetic parameters, optimum pH and temperature, thermal denaturation and salt responses are closely similar to other conventional acid trehalases. Hence, this rather unusual enzyme can be recognized as acid trehalase by its biochemical properties although it does not share genetic homology with other known acid trehalases. The potential role of such acid trehalase in the mobilization of trehalose is discussed.  相似文献   

15.
Trehalases from a thermophilic fungus Thermomyces lanuginosus (M(r) 145 kDa) and a mesophilic fungus Neurospora crassa (M(r) 437 kDa) were purified to compare their thermal characteristics and kinetic constants. Both trehalases were maximally active at 50 degrees C, had an acidic pH optimum and were glycoproteins (20% and 43%, w/w, carbohydrate content for T. lanuginosus and N. crassa, respectively). At their temperature optimum, their K(m) was similar (0.57 and 0.52 mM trehalose, for T. lanuginosus and N. crassa, respectively) but the V(max) of N. crassa enzyme was nine times higher than of T. lanuginosus enzyme. The catalytic efficiency, k(cat)/K(m), for N. crassa trehalase was one order of magnitude higher (6.2 x 10(6) M(-1) s(-1)) than of T. lanuginosus trehalase (4 x 10(5) M(-1) s(-1)). At their T(opt) (50 degrees C), trehalase from both sources exhibited similar thermostability (t(1/2)6 h). The energy of activation, E(a), for T. lanuginosus trehalase was 15.12 kcal mol(-1) and for N. crassa trehalase it was 9.62 kcal mol(-1). The activation energy for thermal inactivation for the N. crassa enzyme (92 kcal mol(-1)) was two-fold higher than for the T. lanuginosus enzyme (46 kcal mol(-1)). The present study shows that the trehalase of N. crassa is not only more stable but also a better catalyst than the T. lanuginosus enzyme.  相似文献   

16.
Heat shock enhanced the synthesis of neutral trehalase in growing cells of Saccharomyces cerevisiae, as detected by immunological methods. The activity of the enzyme was measured in extracts obtained by two methods: cells were either harvested by filtration and subsequent disruption with glass beads at 0-4 degrees C or immediately frozen with liquid nitrogen in the presence of Triton X-100, followed by thawing at 30 degrees C. The first procedure yielded artificially high activities of neutral trehalase in heat-shocked cells due to rapid (less than 1 min) activation during handling at 4 degrees C before homogenization. Activity of the enzyme in these homogenates decreased 75-90% upon a treatment with alkaline phosphatase, indicating that activation was due to phosphorylation. The second procedure yielded low trehalase activities for heat-shock treated cells, much higher activities for cells shifted back for some seconds to 27 degrees C, and very low activities again for cells shifted from 27 to 40 degrees C for a second time. Thus, permeabilization of cells following rapid freezing in Triton X-100 is a method of choice to study post-translational modulation of the neutral trehalase of S. cerevisiae by phosphorylation and dephosphorylation.  相似文献   

17.
Trehalases play a central role in the metabolism of trehalose and can be found in a wide variety of organisms. A periplasmic trehalase (α,α-trehalose glucohydrolase, EC 3.2.1.28) from the thermophilic bacterium Rhodothermus marinus was purified and the respective encoding gene was identified, cloned and overexpressed in Escherichia coli. The recombinant trehalase is a monomeric protein with a molecular mass of 59 kDa. Maximum activity was observed at 88°C and pH 6.5. The recombinant trehalase exhibited a K m of 0.16 mM and a V max of 81 μmol of trehalose (min)−1 (mg of protein)−1 at the optimal temperature for growth of R. marinus (65°C) and pH 6.5. The enzyme was highly specific for trehalose and was inhibited by glucose with a K i of 7 mM. This is the most thermostable trehalase ever characterized. Moreover, this is the first report on the identification and characterization of a trehalase from a thermophilic bacterium.  相似文献   

18.
An extract containing trehalase and invertase was prepared from apical internodes of sugar cane. The extract hydrolysed three glucosides: maltose, trehalose and sucrose. By reprecipitation with ammonium sulphate, maltase and trehalase activities appear to be due to different enzymes. As was also shown by differential inhibition and activation and by studies on the behaviour of both enzymes during growth, invertase and trehalase activities are attributed to different enzymes whose activities do not overlap. Invertase-free preparations confirm these results. Sucrose is a simple competitive inhibitor of sugar cane trehalase, excluding a regulatory role for this sugar. Sucrose was found at inhibitory levels in the first four apical internodes. A close correlation between sugar cane growth and invertase and trehalase levels was found in the apical internodes. Invertase has the greatest activity during growing, and trehalase reaches a maximum at maturity, prior to the flowering process. The high levels of trehalase in the flower suggest that the enzyme is involved in flowering or in related processes linked to seed formation.  相似文献   

19.
The membrane-depolarizing agents 2,4-dinitrophenol, carbonylcyanide m-chlorophenylhydrazone, and nystatin are known to cause a rapid increase in the cyclic AMP level in fungal cells. Addition of these proton ionophores to yeast stationary-phase cells or ascospores causes an immediate 10-fold increase in trehalase activity. This observation is in agreement with a role for cyclic AMP-induced phosphorylation in the activation process of trehalase. It also provides an explanation for previous results on the induction of trehalose breakdown by 2,4-dinitrophenol in resting yeast cells.  相似文献   

20.
Ascospores of both A‐group and B‐group Leptosphaeria maculans germinated at temperatures from 5–20°C on distilled water agar or detached oilseed rape leaves. After 2 h of incubation on water agar, some A‐group ascospores had germinated at 10–20°C and some B‐group ascospores had germinated at 5–20°C. The percentages of both A‐group and B‐group ascospores that had germinated after 24 h of incubation increased with increasing temperature from 5–20°C. The observed time (Vo50) which elapsed from inoculation until 50% of the spores had germinated was shorter for B‐group than for A‐group ascospores. Germ tube length increased with increasing temperature from 5–20°C for both ascospore groups. Germ tubes from B‐group ascospores were longer than germ tubes from A‐group ascospores at all temperatures tested, but the mean diameter of germ tubes from A‐group ascospores (1.8 μm) was greater than that of those from B‐group ascospores (1.2μm) at 15°C and 20°C. The average number of germ tubes produced from A‐group ascospores (3.8) was greater than that from B‐group ascospores (3.1) after 24 h of incubation at 20°C, on both water agar and leaf surfaces. Germ tubes originated predominantly from interstitial cells or terminal cells of A‐group or B‐group ascospores, respectively, on both water agar and leaf surfaces. Hyphae from A‐group ascospores grew tortuously with extensive branching, whilst those from B‐group ascospores were predominantly long and straight with little branching, whether the ascospores were produced from oilseed rape debris or from crosses between single ascospore isolates, and whether ascospores were germinating on water agar or leaf surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号