首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The Ccr4-not complex regulates Skn7 through Srb10 kinase   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

7.
8.
In this work, we determine that the Saccharomyces cerevisiae Ccr4-Not complex controls ubiquitination of the conserved ribosome-associated heterodimeric EGD (enhancer of Gal4p DNA binding) complex, which consists of the Egd1p and Egd2p subunits in yeast and is named NAC (nascent polypeptide-associated complex) in mammals. We show that the EGD complex subunits are ubiquitinated proteins, whose ubiquitination status is regulated during cell growth. Egd2p has a UBA domain that is not essential for interaction with Egd1p but is required for stability of Egd2p and Egd1p. Ubiquitination of Egd1p requires Not4p. Ubiquitination of Egd2p also requires Not4p, an intact Not4p RING finger domain, and all other subunits of the Ccr4-Not complex tested. In the absence of Not4p, Egd2p mislocalizes to punctuate structures. Finally, the EGD complex can be ubiquitinated in vitro by Not4p and Ubc4p, one of the E2 enzymes with which Not4p can interact. Taken together our results reveal that the EGD ribosome-associated complex is ubiquitinated in a regulated manner, and they show a new role for the Ccr4-Not complex in this ubiquitination.  相似文献   

9.
The Ccr4-Not complex is a conserved multi-subunit complex in eukaryotes that carries 2 enzymatic activities: ubiquitination mediated by the Not4 RING E3 ligase and deadenylation mediated by the Ccr4 and Caf1 orthologs. This complex has been implicated in all aspects of the mRNA life cycle, from synthesis of mRNAs in the nucleus to their degradation in the cytoplasm. More recently the complex has also been implicated in many aspects of the life cycle of proteins, from quality control during synthesis of peptides, to assembly of protein complexes and protein degradation. Consistently, the Ccr4-Not complex is found both in the nucleus, where it is connected to transcribing ORFs, and in the cytoplasm, where it was revealed to be both associated with translating ribosomes and in RNA processing bodies. This functional and physical presence of the Ccr4-Not complex at all stages of gene expression raises the question of its fundamental role. This review will summarize recent evidence designing the Not3/5 module of the Ccr4-Not complex as a functional module involved in coordination of the regulation of gene expression between the nucleus and the cytoplasm.  相似文献   

10.
11.
12.
Eukaryotic cells control their proteome by regulating protein production and protein clearance. Protein production is determined to a large extent by mRNA levels, whereas protein degradation depends mostly upon the proteasome. Dysfunction of the proteasome leads to the accumulation of non-functional proteins that can aggregate, be toxic for the cell, and, in extreme cases, lead to cell death. mRNA levels are controlled by their rates of synthesis and degradation. Recent evidence indicates that these rates have oppositely co-evolved to ensure appropriate mRNA levels. This opposite co-evolution has been correlated with the mutations in the Ccr4-Not complex. Consistently, the deadenylation enzymes responsible for the rate-limiting step in eukaryotic mRNA degradation, Caf1 and Ccr4, are subunits of the Ccr4-Not complex. Another subunit of this complex is a RING E3 ligase, Not4. It is essential for cellular protein solubility and has been proposed to be involved in co-translational quality control. An open question has been whether this role of Not4 resides strictly in the regulation of the deadenylation module of the Ccr4-Not complex. However, Not4 is important for proper assembly of the proteasome, and the Ccr4-Not complex may have multiple functional modules that participate in protein quality control in different ways. In this work we studied how the functions of the Caf1/Ccr4 and Not4 modules are connected. We concluded that Not4 plays a role in protein quality control independently of the Ccr4 deadenylase, and that it is involved in clearance of aberrant proteins at least in part via the proteasome.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号