首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ion-paring HPLC–MS–MS method with positive ion mode electrospray ionization has been developed to simultaneously quantify Ziagen, carbovir monophosphate, carbovir diphosphate and carbovir triphosphate. N′,N′-Dimethylhexylamine was used as the ion-pairing agent. The presence of this ion-pairing agent allowed the retention and separation of the four compounds on a reversed-phase HPLC column as well as the detection of the nucleotides with positive ion mode electrospray ionization. The limits of detection were found to be better than 25 nM for all the analytes. Calibration curves of the analytes showed excellent linearity over the range of 25 nM to 5 μM. The relative standard deviations and accuracies for replicate analyses of quality control samples were less than 15%. The method has been successfully applied to the analysis of these compounds in human liver cells treated with Ziagen.  相似文献   

2.
3.
Knowledge of the energetic state of tissue is required in a wide range of experimental studies, particularly those investigating the decline and recovery of cellular metabolism after metabolic stress. Such information can be obtained from high-performance liquid chromatography (HPLC) determination of tissue levels of adenine nucleotides (ATP, ADP, and AMP) and their interrelationship in the tissue energy charge (EC). Accordingly, a large range of techniques with which to measure these molecules and their downstream metabolites have been reported. However, the accurate determination of the tissue EC also depends on the nucleotide extraction procedure given that changes in adenine nucleotide levels take place very quickly when ATPases are not inactivated immediately. In this article, we describe an ion-pair reversed-phase HPLC method by which separation of adenine nucleotides can be performed rapidly, allowing multiple analyses in 1 day, with both high sensitivity and extraction efficiency and using fresh samples, thereby avoiding freeze-thaw degradation of nucleotides. We applied this method to hippocampal brain slice extracts and show that same-day extraction and analysis results in a more accurate determination of the in situ energetic state than does the commonly used snap-freezing in liquid nitrogen.  相似文献   

4.
An isocratic high-performance liquid chromatographic (HPLC) method with ultraviolet detection is described for the quantification of the atypical neuroleptic clozapine and its major metabolites, N-desmethylclozapine and clozapine N-oxide, in human serum or plasma. The method included automated solid-phase extraction on C18 reversed-phase material. Clozapine and its metabolites were separated by HPLC on a C18 ODS Hypersil analytical column (5 μm particle size; 250 mm × 4.6 mm I.D.) using an acetonitrile—water (40:60, v/v) eluent buffered with 0.4% (v/v) N,N,N′,N′-tetramethylethylenediamine and acetic acid to pH 6.5. Imipramine served as internal standard. After extraction of 1 ml of serum or plasma, as little as 5 ng/ml of clozapine and 10 or 20 ng/ml of the metabolites were detectable. Linearity was found for drug concentrations between 5 and 2000 ng/ml as indicated by correlation coefficients of 0.998 to 0.985. The intra- and inter-assay coefficients of variation ranged between 1 and 20%. Interferences with other psychotropic drugs such as benzodiazepines, antidepressants or neuroleptics were negligible. In all samples, collected from schizophrenic patients who had been treated with daily oral doses of 75–400 mg of clozapine, the drug and its major metabolite, N-desmethylclozapine, could be detected, while the concentrations of clozapine N-oxide were below 20 ng/ml in three of sixteen patients. Using the method described here, data regarding relations between therapeutic or toxic effects and drug blood levels or metabolism may be collected in clinical practice to improve the therapeutic efficacy of clozapine drug treatment.  相似文献   

5.
Adenosie, AMP, ADP and ATP activated adenylate cyclase in pig skin (epidermis) slices resulting in the accumulation of cyclic AMP. This effect was highly potentiated by the addition of the cyclic AMP-phophodiesterase inhibitor, papaverine. But another inhibitor, theophylline, strongly blocked the activation of adenylate cyclase by adenosine and adenine nucleotides. Theophylline apparently competed with adenosine for the cell suface receptor. Like theophylline, the addition of adenine alone caused no accumulation of cyclic AMP, but it significantly inhibited the stimulatory effect of adenosine. Guanosine, or guanine, cytidine, uridine, or thymidine nucleotides has no effect on the accumulation of cyclic AMP. Among other adenine nucleotides was tested, adenosine 5′-monophosphoramidate, but not adenosine 5′-monosulfate, significantly increased cyclic AMP especially with the addition of papaverine. Neither 2′- nor 3′-adenylic acid were effective. Our data indicate that pig epidermis has four specific and independent adenylate cyclase systems for adenosine (and adenine nucleotides), histamine, epinephrine and prostaglandin E.  相似文献   

6.
A reversed-phase high-performance liquid chromatographic assay (HPLC) was utilized for monitoring xanomeline (LY246708/NNC 11–0232) and a metabolite, desmethylxanomeline, in human plasma. Xanomeline, desmethylxanomeline and internal standard were extracted from plasma with hexane at basic pH. The organic solvent extract was evaporated to dryness with nitrogen and the dried residue was reconstituted with 0.2 M HCl-methanol (50:50, v/v). A Zorbax CN 150 × 4.6 mm I.D., 5-μm column and mobile phase consisting of 0.5% (5 ml/l) triethylamine (TEA) adjusted to pH 3.0 with concentrated orthophosphoric acid-tetrahydrofuran (THF) (70:30, v/v) produced consistent resolution of analytes from endogenous co-extracted plasma components. Column effluent was monitored at 296 nm/0.008 a.u.f.s. and the assay limit of quantification was 1.5 ng/ml. A linear response of 1.5 to 20 ng/ml was sufficient to monitor plasma drug/metabolite concentrations during clinical trials. HPLC assay validation as well as routine assay quality control (QC) samples indicated assay precision/accuracy was better than ±15%.  相似文献   

7.
A reversed-phase high-performance liquid chromatographic assay for the simultaneous determination of phenytoin and fosphenytoin, a prodrug for phenytoin, in human plasma and plasma ultrafiltrate is described. For plasma, the method involves simple extraction of drugs with diethyl ether and evaporation of solvent, followed by injection of the reconstituted sample onto a reversed-phase C18 column. Plasma ultrafiltrate is injected directly into the HPLC column. Compounds are eluted using an ion-pair mobile phase containing 20% acetonitrile. The eluent is monitored by UV absorbance at 210 nm. The fosphenytoin standard curves are linear in the concentration range 0.4 to 400 μg/ml for plasma and 0.03 to 80 μg/ml for ultrafiltrate. Phenytoin standard curves are linear from 0.08 to 40 μg/ml for plasma and from 0.02 to 5.0 μg/ml for ultrafiltrate. No interferences with the assay procedure were found in drug-free blank plasma or plasma ultrafiltrate. Relative standard deviation for replicate plasma or ultrafiltrate samples was less than 5% at concentrations above the limit of quantitation for both within- and between-run calculations.  相似文献   

8.
The applicability of reversed-phase high-performance liquid chromatography (HPLC) to the analysis of the products of recombinant insulin was studied. The influence of several mobile phases in reversed-phase and ion-pair HPLC on selectivity, resolution and sensitivity was investigated. Optimum conditions for the separation of insulin-related proteins on commercial and laboratory-made supports were established by means of three-dimensional optimizations of selectivity and resolution as a function of pH and ionic strength (μ). A mechanism for the separation of proteins with a mobile phase containing a high salt concentration and a pH near the isoelectric point of proteins is proposed. The questions of scaling up are considered. The proposed techniques allow the analysis of the main impurities and ensures a high quality of active insulin production.  相似文献   

9.
A high-performance liquid chromatographic method has been developed for the simultaneous determination of mycophenolic acid (MPA) and its glucuronide conjugate (MPAG) in human plasma. The method involves protein precipitation with acetonitrile, followed by ion-pair reversed-phase chromatography on C18 column, with a 40 mM tetrabutyl ammonium bromide (TBA)–acetonitrile (65:35, v/v) mobile phase. A 20-μl volume of clear supernatant was injected after centrifugation, and the eluent was monitored at 304 nm. No interference was found either with endogenous substances or with many concurrently used drugs, indicating a good selectivity for the procedure. Calibration curves were linear over a concentration range of 0.5–20.0 μg/ml for MPA and 5–200 μg/ml for MPAG. The accuracy of the method is good, that is, the relative error is below 5%. The intra- and inter-day reproducibility of the analytical method is adequate with relative statistical deviations of 6% or below. The limits of quantification for MPA and MPAG were lower than 0.5 and 5.0 μg/ml, respectively, using 50 μl of plasma. The method was used to determine the pharmacokinetic parameters of MPA and MPAG following oral administration in a patient with renal transplantation.  相似文献   

10.
The separation of mono- and oligonucleotides possibilities by means of high performance ion-exchange, reversed-phase, so-called "ion-pair" and adsorption chromatography are studied. The influence of the eluent composition (solvent, salt) and pH on the retention, selectivity and resolution in reversed-phase and ion-exchange chromatography is investigated. The model of the hydrophobic-pair ion-exchange mechanism of ion-pair chromatography is considered. The conditions for analysis and preparative isolation of a desired component are optimized for selectivity, resolution and throughput. The methods for prediction of the optimal gradient elution program reasonable resolution at the desired retention time and for choosing the guard-column packing material are proposed. A design of the gradient for system and the version of slurry packing method for HPLC prolonged life-time columns are improved. The automatized analytical technique for determination of the oligonucleotide monomeric composition with two coupled microcolumns is described, that involves enzymatic digestion of an oligonucleotide followed by ion-exchange separation of the hydrolysate.  相似文献   

11.
首次报道用乙醇系统分析PTC-氨基酸的新方法中各衍生物获得最佳分离的建立过程。PTC-氨基酸衍生后溶于A溶液,然后进样于4μmNovaPakC18柱(3.9mm×150mm)。系统的优化步序包括全面调控流动相的pH值与TEA浓度、乙醇梯度程序、柱温等诸多影响HPLC色谱行为的因素。最适条件为:A溶液含0.14MG酸钠、0.75ml/LTEA、PH6.35;B溶液为100%乙醇;柱温30℃。通过优化的乙醇梯度最终在约44min内将15种PTC-氨基酸很好地分离。此法可用于替代代表新科技水平的PTC-氨基酸乙腈分析系统。  相似文献   

12.
A method has been developed for the quantitative profiling of over twenty nucleotides and related phosphorylated species using ion-pair reversed-phase liquid chromatography hyphenated to negative ion tandem electrospray mass spectrometry. The influence of mobile phase pH and ion-pairing agent concentration were assessed to optimise separation and peak shapes. Full quantitative analysis was obtained for the nucleotides by reference to structurally related calibration standards. The developed method was applied to profile changes in nucleotides and related compounds in monolayer cultured Chinese hamster ovary (CHO) cells expressing the beta(2) adrenoceptor when exposed to pharmacological stimuli. These experiments demonstrate the potential of the LC-MS/MS method to detect changes in nucleotide drug targets as well as the simultaneous monitoring of levels of other nucleotides.  相似文献   

13.
An isocratic high-performance liquid chromatographic (HPLC) method for simultaneous separation of the components in the antimalarial combination drug Malarone® with UV detection is described. An HPLC system using a mixed mode column composed of 50% C18 phase and 50% strong cation-exchanger has been optimised for the simultaneous separation of atovaquone, proguanil and its two main metabolites. The mobile phase was optimised for factors such as pH, counter ion concentration and acetonitrile. Elimination of interferences from other antimalarial drugs was achieved by adding sodium perchlorate to the mobile phase. With a mobile phase of acetonitrile-phosphate buffer (60:40, v/v) pH 6.8, 50.7 mmol l−1 K+ and 10 mmol l−1 Na·ClO4, separation was achieved within a run time shorter than 17 min.  相似文献   

14.
A simple and fast ion pair reversed-phase high-performance liquid chromatographic method has been developed for the simultaneous determination of ATP, ADP, AMP, GTP, GDP, IMP, NADP+, NADPH+, NAD+, NADH, ADP-ribose, inosine, adenosine, hypoxanthine, and xanthine. This method allows us to have a complete picture of the most important nucleotides present in fresh human erythrocytes. Furthermore it is particularly useful in the study of the erythrocyte adenine nucleotide catabolism allowing the detection of degradation products such as IMP, inosine, adenosine, hypoxanthine, and xanthine. The separation of the compounds under investigation is achieved in less than 15 min using a reversed-phase 3-micron Supelcosil LC-18 column and adding tetrabutylammonium, as ion-pair agent, to the buffers. The short time of analysis, the high reproducibility of the system, and the accurate evaluation of the compounds of interest make this method particularly suitable for routine analysis. Finally it is possible to use this assay as an alternative method of measuring activities of enzymes which catalyze reactions involving some of these compounds, as in the case of Na+-K+ ATPase, AMP deaminase, and adenosine deaminase.  相似文献   

15.
A method for determination of carnitine, 4-(N,N,N-trimethylammonio)butanoate (butyrobetaine), and 2-(N,N,N-trimethylammonio)acetate (betaine) is described. These ω-trimethylammonio carboxylates and the chemically analogous internal standards 4-(N,N-dimethyl-N-propylammonio)-3-hydroxybutanoate or 5-(N,N,N-trimethylammonio)hexanoate were derivatized by reaction wiht 4′-bromophenacyl triflate in the presence of N,N-diisopropylethylamine. The trialkylammonio carboxylate 4′-bromophenacyl ester derivatives were separated from other sample constituents by reversed-phase ion-pair high-performance liquid chromatography with spectrophotometric detection at 254 nm. Standard curves were linear over a sample concentration range of 10–100 nmol/ml. Quantities of 2.5 nmol of ω-trialkylammonio acid derivatives injected into the chromatography were detected with signal-to-noise ratios greater than 50.  相似文献   

16.
A highly efficient and reproducible two-step liquid—liquid ion-pair extraction technique for the isolation of morphine from biological samples is described. A rapid normal phase high-performance liquid chromatographic procedure coupled with amperometric electrochemical detection has also been developed for subsequent quantification of morphine. Extraction involves the disruption of brain tissue or plasma in methanol, centrifugation, evaporation and reconstitution in ethyl acetate containing 10 mM di-(2-ethylhexyl) phosphoric acid, a liquid cation-exchanger, and back-extraction into 170 mM orthophosphoric acid. An acidic eluent consisting of acetonitrile—76 mM orthophosphoric acid—ammonia buffer (pH 3.0) (15:85, v/v) in combination with a strong cation-exchange column allows complete separation of morphine and the internal standard, nalbuphine. The limit of detection for morphine is 1.3 ng on-column.  相似文献   

17.
Dinucleoside(5′,5′) polyphosphates (ApnA, ApnG, GpnG, n=3–6) are new group of hormones controlling important biological processes. Because some of the dinucleoside(5′,5′) polyphosphates are commercially not available purification of chemical synthesised dinucleoside(5′,5′) polyphosphates became necessary in order to test their physiological and pharmacological properties. It was the aim of this study to find a method which allows purification of 0.1–0.2 g quantities of dinucleoside polyphosphates by analytical HPLC columns yielding products with impurities lower than 1.0%. Adenosine(5′)-polyphospho-(5′)guanosines were synthesised by mixing the corresponding mononucleotides. The reaction results in a complex mixture of ApnA, ApnG and GpnG (with n=3–6 in all cases). The reaction mixture was concentrated on a preparative C18 reversed-phase column. The concentrate was displaced on a reversed-phase stationary. As a result of displacement chromatography, anion-exchange chromatography in gradient modus yielded baseline separated dinucleoside polyphosphates (homogeneity of the fractions>99%). The identity of the substances were determined by matrix assisted laser desorption ionisation mass spectrometry.  相似文献   

18.
Utilization of ion-air reagents in a reversed-phase chromatographic system allows solving a number of problems related to the separation of purine and pyrimidine derivatives. Simultaneous analysis of nucleotides, nucleosides and their bases was carried out by acetonitrile gradient elution using tetrabutyl ammonium phosphate as a counterion in the mobile phase. Besides, optimal conditions were selected for isocratic separation of adenine nucleotides and their metabolites. Furthermore, isocratic separation of certain purines and pyrimidines was achieved by modifying the stationary C18-phase with pentane- and heptane sulphonic acids.  相似文献   

19.
A reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed and validated for the quantitative determination of paclitaxel in human urine. A comparison is made between solid-phase extraction (SPE) and liquid-liquid extraction (LLE) as sample pretreatment. The HPLC system consists of an APEX octyl analytical column and acetonitrile-methanol-0.2 μM ammonium acetate buffer pH 5 (4:1:5, v/v) as the mobile phase. Detection is performed by UV absorbance measurement at 227 nm. The SPE procedure involves extraction on Cyano Bond Elut columns. n-Butylchloride is the organic extraction fluid used for the LLE. The recoveries of paclitaxel in human urine are 79 and 75% for SPE and LLE, respectively. The accuracy for the LLE and SPE sample pretreatment procedures is 100.4 and 104.9%, respectively, at a 5 μg/ml drug concentration. The lower limit of quantitation is 0.01 μg/ml for SPE and 0.25 μg/ml for LLE. Stability data of paclitaxel in human urine are also presented.  相似文献   

20.
An overview of high-performance liquid chromatographic separation techniques (reversed-phase and ion-pair reversed-phase) used in the analysis of purine ribonucleotides, ribonucleosides and nucleobases, including procedures for sample preparation, is given. Coverage of the separation techniques is extended to the measurement of specific radioactivities of these compounds in tracer kinetic experiments for metabolic flux rate analyses. This article is focused on the development and adaptation of reversed-phase separation techniques for nucleotides, nucleosides and bases that are used to examine a variety of biomedical problems. The investigation of purine nucleotide metabolic disorders or physiological transition in the pathomechanisms of different diseases and syndromes or in cell maturation processes, respectively, requires the application of chromatographic separation to a multitude of tissues and body fluids. These samples vary greatly in concentrations of purine compounds with low molecular mass, from ca. 5 mM to ca. 0.5 μM. The advantages and disadvantages of different techniques are critically discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号