首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Living two-cell mouse embryos were flushed out from the oviduct 17, 24 and 36 hours after fertilization in order to obtain cells in the G1S, early G2 and late G2 phases of the second cell cycle. The nuclei of the living cells were stained with Hoechst 33342. The coordinates of the contour shapes of the entire cells (cellular contours) were registered by contour image processing with a TV camera coupled with a computer; the contours of the nuclei were computed by means of a digitizer coupled with the computer. Fourier analysis of the cellular and nuclear contours revealed systematic modifications in the folding of the cells and nuclei in the course of the murine second cell cycle. The progression of cells through the second cell cycle was correlated with an increasing diversification of cellular and nuclear shape, with the diversification being much more pronounced in the nuclear shapes.  相似文献   

2.
A change in the structure of FAF-28 Chinese hamster cell population occurred during 24 h following gamma-irradiation or hyperthermia heating, or the effect of both factors was studied by flow cytofluorometry. With radiation delivered immediately after heating the distribution of cells among cycle phases was nearly the same as with hyperthermia alone: the share of cells at the S-phase was invariable during the first 4-6 h, then it slowly diminished; at G1 it slowly decreased and at G2 increased. When irradiation preceded heating the pattern of cell redistribution during the first hours was the same as that with radiation alone: the "wave" of transition from G1 to S phase was the same, but shorter in amplitude and longer in time; then cells were accumulated at G2+M and remained there for 24 h. Thus, of the two factors applied, the first was the major one in changing the cell population structure during the first hours after treatment. In 24 h the result was the same, that is, the considerable accumulation of cells at G2+M.  相似文献   

3.
Myogenic cells were isolated from adult rat skeletal muscles and cultured in vitro. Cell proliferation was analyzed between days 1 and 14. The cell cycle phases were determined by examining Feulgen-stained cultures with a cell image processor. The nuclei were automatically analyzed by calculating 18 parameters relating to the texture and densitometry of chromatin and the shape of each nucleus. Cell cycle phases were characterized (Moustafa and Brugal, 1984). The recognition methods made it possible to analyse the nuclei of the myogenic cell populations which were either involved in each phase of the mitotic cycle, or left out of the cycle after fusion into myotubes.After 3 hr of culture 10% of the cell population was involved in the cell cycle. In the presence of foetal calf serum, this percentage increased until day 3 after plating. At that time, the DNA content of 28.2% of the cell population was higher than 3C, whereas it is 2C in G1 or G0 nuclei; image analysis showed that 42% of these cells were in S or G2 phase. From day 4, the proliferation rate gradually slowed down until day 8. After day 8, when numerous myotubes differentiated, the percentage of S and G2 phase cells had diminished to between 3 and 8%. The percentage of nuclei in G0 increased when the first myotubes differentiated around day 5. Myotube nuclei were largely in G0. When horse serum was added to the culture medium on day 4 to enhance myotube differentiation, significant cell proliferation was observed before cell fusion.These methods of analysis give the first daily pattern of myogenic cell proliferation and fusion in a cell population isolated from adult muscles.  相似文献   

4.
When denervated at the medium bud stage, limb blastemas of the newt, Pleurodeles waltlii Michah, stop growing. In order to better understand the role of nerves in the cell cycle in blastemas, we studied the distribution of mesenchymal cells in the G0-1, G1, S, G2 and M phases 48 and 96 h after denervation. The cell-cycle phases were determined by examining Feulgen-stained nuclei using a SAMBA 200 (System for Analytical Microscopy in Biological Applications) cell image processor. The cell nuclei were automatically analyzed by calculating 18 parameters related to the densitometry and texture of chromatin, and the shape of each nucleus. Cell-cycle phases were classified according to the unsupervised recognition method using a SAMBA 200 system as proposed by Moustafa and Brugal for cell-kinetics analysis. The classification obtained was tested against the results of stepwise linear discriminant analysis performed according to the method of Giroud. Our results show that, in blastemas 96 h after denervation, the percentage of cells in the S, G2, and M phases decreases significantly, while the percentage of G1 and G0-1 cells increases (+ 51% for G1 cells; + 30% for G0-1 cells). Thus, it appears that denervation of medium-bud-stage limb blastemas promotes the lengthening of G1 and premature exiting of cells from the cycle into the G0-1 phase. These results show that nerves (i.e., neurotrophic factor) regulate cell kinetics during newt limb regeneration by maintaining blastema mesenchymal cells in the cell-cycle.  相似文献   

5.
C6 glioma cells in culture were treated with 1 mM dibutyryl cyclic AMP (Db-cAMP) for 5, 8, 24 and 72 h. The cells were labelled with [3H]-thymidine before either the end, or the beginning, of the Db-cAMP treatment. The cell cycle passage was monitored by the simultaneous determination of DNA content and DNA synthesis in propidium iodide stained autoradiograms. The data revealed an early (t less than or equal to 3-8 h) and moderate inhibitory effect of Db-cAMP on all phases of the cell cycle except mitosis; some cells (2%) were completely blocked in the S phase. Later (8 less than t less than 24-72 h), the cycling of a substantial part of the population became inhibited in G1 phase. Microdensitometric texture analysis of Feulgen-stained nuclei, performed 24 h after administration of Db-cAMP, showed a higher inhomogeneity of the DNA distribution in cell nuclei, caused by the condensation of a part of the chromatin. This may reflect either changes in genome expression taking part in the process of cAMP induced differentiation or transit of some cells into quiescent G0 or S0 phases.  相似文献   

6.
Female Swiss mice were sacrificed at 2 h intervals between 16–30 and 40–56 h after insemination. One-, 2- and 4-cell embryos were stained by the Feulgen method and cytophotometric measurement of their nuclear DNA content was carried out. The cells with 2C and 4C DNA content were assumed to be in G1 and G2 phase and those with intermediate DNA content in S phase of the cell cycle. The fractions of cells which had passed a given phase of the cell cycle were calculated for various times after insemination and utilized for measurements of the second and third cell cycle timing. Results of measurements for the second cell cycle: G1 phase 1.3 h, S phase 6.1 h, G2 phase 15.4 h, whereas for the third cell cycle: G1 phase 1.6 h, S phase 7.4 h, G2 phase 0.5 h. The first cleavage division was calculated as 1.6 h, the second as 1.3 h and the third as 1.2 h. Complete intra-embryonic synchronization of the DNA-synthesizing nuclei was preserved during the entire synthesis phase of 2-cell embryos, while in 4-cell embryos they were slightly asynchronized. Among mitotic cells of the first cleavage division and G1 cells of 2-cell embryos a slight interembryonic asynchronization was found which deepened during subsequent cell cycle phases.  相似文献   

7.
Rat uterine luminal epithelial cells (LEC) responded differently when exposed to an injection of 1.0 microgram estradiol-17 beta (E2) compared to a continuous infusion of E2 at the rate of 1.0 microgram/24 hours. After injection or beginning infusion, LEC mean nuclear area significantly decreased by 4 h, then increased thereafter. After injection, nuclear area distributions were determined at each time point. The percentage of large nuclei (greater than 40 mu 2) decreased by 4h postinjection and remained a relatively small proportion of the population, while the percentage of nuclei of 20-30 mu 2 areas increased throughout the experiment. During infusion, the percentage of large nuclei decreased by 4h after pump implantation, then increased. Only infusion induced sustained, increased uterine protein content, DNA synthesis and ornithine decarboxylase activity. This study suggests that E2 treatment modality induces differences in nuclear size in target cells as well as in biochemical parameters.  相似文献   

8.
The synchronization effects of the plant amino acid mimosine on proliferating higher eukaryotic cells are still controversial. Here, I show that 0.5 mM mimosine can induce a cell cycle arrest of human somatic cells in late G1 phase, before establishment of active DNA replication forks. The DNA content of nuclei isolated from mimosine-treated cells was determined by flow cytometry. The presence or absence of DNA replication forks in these isolated nuclei was then detected by DNA replication run-on assays in vitro. Treatment of asynchronously proliferating HeLa or EJ30 cells for 24 h with 0.5 mM mimosine resulted in a population synchronized in late G1 phase. S phase entry was inhibited by 0.5 mM mimosine in cells released from a block in mitosis or from quiescence. When added to early S phase cells, 0.5 mM mimosine did not prevent S phase transit, but delayed progression through late stages of S phase after a lag of 4 h, eventually resulting in a G1 phase population by preventing entry into the subsequent S phase. In contrast, lower concentrations of mimosine (0.1-0.2 mM) failed to prevent S phase entry, resulting in cells containing active DNA replication foci. The G1 phase arrest by 0.5 mM mimosine was reversible upon mimosine withdrawal. This synchronization protocol using 0.5 mM mimosine can be exploited for studying the initiation of human DNA replication in vitro.  相似文献   

9.
B Kirkhus  O P Clausen 《Cytometry》1990,11(2):253-260
Hairless mice were injected intraperitoneally with bromodeoxyuridine (Brd-Urd). Basal cells were isolated from epidermis, fixed in 70% ethanol, and prepared for bivariate BrdUrd/DNA flow cytometric (FCM) analysis. Optimum detection of incorporated BrdUrd in DNA was obtained by combining pepsin digestion and acid denaturation. The cell loss was reduced to a minimum by using phosphate-buffered saline containing Ca2+ and Mg2+ to neutralize the acid. The percentage of cells in S phase and the average uptake of BrdUrd per labelled cell in eight consecutive windows throughout the S phase were measured after pulse labelling at intervals during a 24 h period. Furthermore, the cell cycle progression of a pulse-labelled cohort of cells was followed up to 96 h after BrdUrd injection. In general the results from both experiments were in good agreement with previous data from 3H-thymidine labelling studies. The percentage of cells in S phase was highest at night and lowest in the afternoon, whereas the average uptake of BrdUrd per labelled cell showed only minor circadian variations. There were no indications that BrdUrd significantly perturbed normal epidermal growth kinetics. A cell cycle time of about 36 h was observed for the labelled cohort. Indications of heterogeneity in traverse through G1 phase were found, and the existence of slowly cycling or temporarily resting cells in G2 phase was confirmed. There was, however, no evidence of a significant population of temporarily resting cells in the S phase. Bivariate DNA/keratin FCM analysis revealed a high purity of basal cells in the suspensions and indicated that the synthesis of the differentiation-keratin K10 was turned on only in G1 phase and after the last division.  相似文献   

10.
Treatment with picolinic acid blocked Neurospora crassa nuclei in G1, and recovery from the treatment allowed a synchronous wave of deoxyribonucleic acid synthesis to occur. Nuclei, which appeared as compact globular bodies during the period of blockage, assumed a ring shape during the following S phase, which was also maintained in the G2 phase. The proportion of compact globular nuclei was much higher in hyphae growing at lower rates, whereas that of ring nuclei increased when the hyphae were growing at higher rates. Horseshoe nuclei (probably mitotic nuclei) and double ring nuclei were also observed in growing hyphae, but their frequencies were low and fairly independent of the rate of growth. The length of the S phase of the Neurospora nuclear division cycle was determined to be about 30 min. From the frequencies of the phase-specific nuclear shapes, the durations of the G1 phase and the combined S plus G2 phases were calculated. The results showed that variations in the growth rates of the mycelia were mainly coupled with variations in the G1 phase of the nuclear division cycle. For mycelia growing in minimal sucrose, the lengths of all of the phases of the nuclear division cycle were estimated.  相似文献   

11.
12.
Exposure of promyelocytic leukemic HL-60 cells to 3-60 nM of the DNA topoisomerase I inhibitor camptothecin (CAM) or to 30-450 nM and 0.12-1.5 microM of DNA topoisomerase II inhibitors teniposide (TN) and 4-(9-acridynylamino)-3-methanesulfon-m-anisidide (m-AMSA), respectively, resulted in two distinct kinetic effects: (1) the cells entered S phase but the rate of DNA replication was reduced in proportion to the inhibitor concentration; (2) the transition from G2 to M was impaired, approximately 1 h after addition of the inhibitor. As a consequence, the cells accumulated in the S (preferentially in early S) and in G2 phases of the cell cycle. Whereas CAM was more efficient in suppressing cell progression through S phase, TN and m-AMSA were more potent G2 blockers. At these low inhibitor concentrations no signs of immediate cytotoxicity or DNA degradation were apparent. However, above 145 nM of CAM, 900 nM of TN, or 2 microM of m-AMSA extensive DNA degradation in nuclei of S phase cells was evident within 6 h of addition of the inhibitor, resulting in the loss of S and G2 + M cells from these cultures. The data indicate that depending on concentration, mechanisms mediating the cytostatic/cytotoxic activity of both DNA topoisomerase I and II inhibitors may be quite different. Suppression of the DNA replication and the G2 to M transition, seen at low inhibitor concentrations, is compatible with the assumption that the inhibitor-induced stabilization of the topoisomerase-DNA cleavable complexes interferes with DNA replication and chromosome condensation/segregation, respectively. Above the threshold concentration for each inhibitor, an endonucleolytic activity is triggered, resulting in rapid DNA degradation in nuclei of S and G2 phase cells. The endonucleolytic effect is not only cell cycle phase-specific but is also modulated by tissue-specific factors because it cannot be observed, e.g., in the lymphocytic leukemic cell lines.  相似文献   

13.
14.
In a low concentration of calcium (0.1 mM), keratinocytes form a monolayer with about 30% of cells synthesizing involucrin. After addition of calcium to the culture medium to a concentration of 1.2 mM, the monolayer stratifies within 24 h, with a preferential migration of involucrin positive keratinocytes. In the present study, we tried to determine if keratinocytes control the decision to migrate at a distinct cell cycle point. A percentage labelled mitosis (PLM) curve was constructed for keratinocytes grown in low calcium medium and values for the length of the cell cycle (47 h), S phase duration (11 h) and G2+M period (6 h), were obtained. Monolayer cultures at 80% confluence were switched to high calcium concentration at various times (from 0 to 48 h), after pulse labelling with [3H]-thymidine. Based on the PLM data, the behaviour of cells known to be in S, G1 and G2 at the time of the migration stimulus were followed. No significant difference in the percentage of labelled suprabasal cells was found for any point of the cell cycle. For cells submitting to stratification, in S phase involucrin staining showed that about 60% of the [3H]-thymidine labelled cells were also involucrin negative. These results indicate that upward migration of keratinocytes in cultured epithelium can be triggered at all points in the cell cycle with equal probability and is not restricted to those cells that already contained involucrin.  相似文献   

15.
The proliferative responsiveness of fibrolasts and mesothelial cells in the mesenterial membrane of normal rats was studied quantitatively after a single i.p. injection of the mast-cell activating and histamine-releasing drug Compound 48/80. To make some allowance for a possible chronobiologic effect of the circadian type on the induced proliferation, the drug was given at 1 a.m., 9 a.m., or 5 p.m., and the animals were examined 16, 24, and 32 h later. The proliferation was estimated by cytophotometric Feulgen DNA measurements in individual fibroblast and mesothelial cell nuclei, and by mitotic frequency counting. The main result was that a larger fraction of fibroblasts than of mesothelial cells was stimulated to proliferation, regardless of the hour of treatment with Compound 48/80. It was further demonstrated that in control animals the fraction of cells of either fibroblastic or mesothelial type present in the S cum G2 cell-cycle phases varied markedly at different hours of the day. Quantitative differences appeared in the induced proliferation with regard to the hour of treatment. The most vigorous proliferative response appeared after administration of the drug at 9 a.m. The fraction of cells in the S cum G2 cell-cycle phases was then increased at 16 h and the fraction of dividing cells at 24 h after treatment, illustrating the promptness of the induced proliferative reaction.  相似文献   

16.
Flow cytometric evaluation of the cytotoxicity of novel antiviral compounds   总被引:1,自引:0,他引:1  
Two acyclic analogs of bromotubercidin were tested for cytotoxic effects on uninfected cells by monitoring cell growth and measuring cell cycle perturbations using flow cytometry. As reported elsewhere, 5-bromotubercidin analogs in which ribose was replaced by 2-hydroxyethoxymethyl (compound 102) or by 1,3-dihydroxypropoxymethyl (compound 183) were potent inhibitors of human cytomegalovirus (HCMV) replication in vitro (Pudlo et al.: Journal of Medicinal Chemistry 31:2086-2092, 1988). Because these compounds also inhibited the growth of uninfected cells, we performed kinetic studies with an established neoplastic line of human cells (KB) using flow cytometry. Growth of KB cells treated with either compound 102 or 183 were inhibited in a dose-dependent manner. Growth inhibition by compound 183, however, was not fully expressed for at least 24 h. DNA analysis by flow cytometry showed that a 4-h incubation with 10 microM compound 102 caused a decrease of cells in G2/M phase. Cells began to accumulate in early S phase by 12 h of incubation, leading to mid S phase accumulation at 21 h. Compound 183 at 10 microM slightly decreased the number of cells in G2/M phase after a 4-h incubation, and led to accumulation of DNA in S phase after a 12-h incubation. By 24 and 30 h, DNA histograms appeared similar to those of control cells but with a slight accumulation of the population in early S phase. In separate experiments, drugs were removed following a 24-h incubation. After removal of compound 102, KB cell growth resumed with a normal population doubling time. In contrast, the effects of compound 183 were not reversible, suggesting the two compounds acted by different biochemical mechanisms.  相似文献   

17.
Human peripheral blood T-lymphocytes, normally resting at the G0 phase, were stimulated with phytohemagglutinin (PHA) and interleukin-2 (IL-2) to induce the cell division cycle. The cells were examined at 24-h intervals for up to 96 h by flow cytometry to determine cell cycle distributions and by electrorotation to determine dielectric properties. The average membrane specific capacitance was found to vary from 12 (+/-1.5) mF/m2 prior to stimulation to 10 (+/-1.5) and 16 (+/-3.5) mF/m2 at 24 and 48 h after stimulation, respectively, and to remain unchanged up to 96 h after stimulation. Scanning electron microscopy studies of the cells revealed an increased complexity in cell membrane morphology following stimulation, suggesting that the observed change in the membrane capacitance was dominated by the alteration of cell surface structures. The average electrical conductivity of the cell interior decreased from approximately 1.1 S/m prior to stimulation to approximately 0.8 S/m at 24 h after stimulation and showed little change thereafter. The average dielectric permittivity of the cell interior remained almost unchanged throughout the course of the cell stimulation. The percentage of T-lymphocytes in the S and G2/M phases increased from approximately 4% prior to stimulation to approximately 11 and approximately 34% at 24 and 48 h after stimulation, respectively. The large change in membrane specific capacitance between the 24 and 48 h time period coincided with the large alteration in the cell cycle distribution where the S and G2/M populations increased by approximately 23%. These data, together with an analysis of the variation of the membrane capacitance during the cell cycle based on the cell cycle-dependent membrane lipid accumulation, show that there is a correlation between membrane capacitance and cell cycle phases that reflects alterations in the cell plasma membrane.  相似文献   

18.
The mixotrophic dinoflagellate Dinophysis acuminata is a widely distributed diarrhetic shellfish poisoning (DSP) producer. Toxin variability of Dinophysis spp. has been well studied, but little is known of the manner in which toxin production is regulated throughout the cell cycle in these species, in part due to their mixotrophic characteristics. Therefore, an experiment was conducted to investigate cell cycle regulation of growth, photosynthetic efficiency, and toxin production in D. acuminata. First, a three-step synchronization approach, termed “starvation-feeding-dark”, was used to achieve a high degree of synchrony of Dinophysis cells by starving the cells for 2 weeks, feeding them once, and then placing them in darkness for 58 h. The synchronized cells started DNA synthesis (S phase) 10 h after being released into the light, initiated G2 growth stage eight hours later, and completed mitosis (M phase) 2 h before lights were turned on. The toxin content of three dominant toxins, okadaic acid (OA), dinophysistoxin-1 (DTX1) and pectenotoxin-2 (PTX2), followed a common pattern of increasing in G1 phase, decreasing on entry into the S phase, then increasing again in S phase and decreasing in M phase during the diel cell cycle. Specific toxin production rates were positive throughout the G1 and S phases, but negative during the transition from G1 to S phase and late in M phase, the latter reflecting cell division. All toxins were initially induced by the light and positively correlated with the percentage of cells in S phase, indicating that biosynthesis of Dinophysis toxins might be under circadian regulation and be most active during DNA synthesis.  相似文献   

19.
Infection of primary murine embryonic cell cultures by adenovirus SA7 (C8) results in an increase in chromatin condensation Average optical density of Feulgen stained nuclei 24 h following virus absorption increased for G0/1, S, and G2 cells by 16.1, 11.3 and 13.1%, respectively. This phenomenon is associated with the stimulation of proliferation, with an increase of the S cell amount by 50% of the control values and a decrease of average cell nuclei areas in all phases of cell cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号