首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tim8 and Tim13 of yeast belong to a family of evolutionary conserved zinc finger proteins that are organized in hetero-oligomeric complexes in the mitochondrial intermembrane space. Mutations in DDP1 (deafness dystonia peptide 1), the human homolog of Tim8, are associated with the Mohr-Tranebjaerg syndrome, a progressive neurodegenerative disorder. We show that DDP1 acts with human Tim13 in a complex in the intermembrane space. The DDP1.hTim13 complex is in direct contact with translocation intermediates of human Tim23 in mammalian mitochondria. The human DDP1.hTim13 complex complements the function of the TIM8.13 complex in yeast and facilitates import of yeast and human Tim23. Thus, the pathomechanism underlying the Mohr-Tranebjaerg syndrome may involve an impaired biogenesis of the human TIM23 complex causing severe pleiotropic mitochondrial dysfunction.  相似文献   

2.
Tim8 and Tim13 are non-essential, conserved proteins of the mitochondrial intermembrane space, which are organized in a hetero-oligomeric complex. They are structurally related to Tim9 and Tim10, essential components of the import machinery for mitochondrial carrier proteins. Here we show that the TIM8-13 complex interacts with translocation intermediates of Tim23, which are partially translocated across the outer membrane but not with fully imported or assembled Tim23. The TIM8-13 complex binds to the N-terminal or intermediate domain of Tim23. It traps the incoming precursor in the intermembrane space thereby preventing retrograde translocation. The TIM8-13 complex is strictly required for import of Tim23 under conditions when a low membrane potential exists in the mitochondria. The human homologue of Tim8 is encoded by the DDP1 (deafness/dystonia peptide 1) gene, which is associated with the Mohr-Tranebjaerg syndrome (MTS), a progressive neurodegenerative disorder leading to deafness. It is demonstrated that import of human Tim23 is dependent on a high membrane potential. A mechanism to explain the pathology of MTS is discussed.  相似文献   

3.
The Mohr-Tranebjaerg syndrome (MTS), a neurodegenerative syndrome characterized by progressive sensorineural hearing loss, dystonia, mental retardation and blindness, is a mitochondrial disease caused by mutations in the deafness/dystonia peptide 1 (DDP1) gene. DDP1 shows similarity to the yeast proteins Tim9, Tim10 and Tim12, components of the mitochondrial import machinery for carrier proteins. Here, we show that DDP1 belongs to a large family of evolutionarily conserved proteins. We report the identification, chromosomal localization and expressional analysis of six human family members which represent further candidate genes for neurodegenerative diseases.  相似文献   

4.
Most mitochondrial proteins are synthesized in the cytosol, imported into mitochondria, and sorted to one of the four mitochondrial subcompartments. Here we identified a new inner membrane protein, Tim40, that mediates sorting of small Tim proteins to the intermembrane space. Tim40 is essential for yeast cell growth, and its function in vivo requires six conserved Cys residues but not anchoring of the protein to the inner membrane by its N-terminal hydrophobic segment. Depletion of Tim40 impairs the import of small Tim proteins into mitochondria both in vivo and in vitro. In wild-type mitochondria, Tim40 forms a translocation intermediate with small Tim proteins prior to their assembly in the intermembrane space in vitro. These results suggest the essential role of Tim40 in sorting/assembly of small Tim proteins.  相似文献   

5.
The Tim23 protein is the key component of the mitochondrial import machinery. It locates to the inner mitochondrial membrane and its own import is dependent on the DDP1/TIM13 complex. Mutations in human DDP1 cause the Mohr-Tranebjaerg syndrome (MTS/DFN-1; OMIM #304700), which is one of the two known human diseases of the mitochondrial protein import machinery. We created a Tim23 knockout mouse from a gene trap embryonic stem cell clone. Homozygous Tim23 mice were not viable. Heterozygous F1 mutants showed a 50% reduction of Tim23 protein in Western blot, a neurological phenotype and a markedly reduced life span. Haploinsufficiency of the Tim23 mutation underlines the critical role of the mitochondrial import machinery for maintaining mitochondrial function.  相似文献   

6.
Tim10p, a protein of the yeast mitochondrial intermembrane space, was shown previously to be essential for the import of multispanning carrier proteins from the cytoplasm into the inner membrane. We now identify Tim9p, another essential component of this import pathway. Most of Tim9p is associated with Tim10p in a soluble 70 kDa complex. Tim9p and Tim10p co-purify in successive chromatographic fractionations and co-immunoprecipitated with each other. Tim9p can be cross-linked to a partly translocated carrier protein. A small fraction of Tim9p is bound to the outer face of the inner membrane in a 300 kDa complex whose other subunits include Tim54p, Tim22p, Tim12p and Tim10p. The sequence of Tim9p is 25% identical to that of Tim10p and Tim12p. A Ser67-->Cys67 mutation in Tim9p suppresses the temperature-sensitive growth defect of tim10-1 and tim12-1 mutants. Tim9p is a new subunit of the TIM machinery that guides hydrophobic inner membrane proteins across the aqueous intermembrane space.  相似文献   

7.
The small Tim proteins in the mitochondrial intermembrane space participate in the TIM22 import pathway for assembly of the inner membrane. Assembly of the small TIM complexes requires the conserved "twin CX3C" motif that forms juxtapositional intramolecular disulfide bonds. Here we identify a new intermembrane space protein, Hot13p, as the first component of a pathway that mediates assembly of the small TIM complexes. The small Tim proteins require Hot13p for assembly into a 70-kDa complex in the intermembrane space. Once assembled the small TIM complexes escort hydrophobic inner membrane proteins en route to the TIM22 complex. The mechanism by which the small Tim proteins bind and release substrate is not understood, and we investigated the affect of oxidant/reductant treatment on the TIM22 import pathway. With in organello import studies, oxidizing agents arrest the ADP/ATP carrier (AAC) bound to the Tim9p-Tim10p complex in the intermembrane space; this productive intermediate can be chased into the inner membrane upon subsequent treatment with reductant. Moreover, AAC import is markedly decreased by oxidant treatment in Deltahot13 mitochondria and improved when Hot13p is overexpressed, suggesting Hot13p may function to remodel the small TIM complexes during import. Together these results suggest that the small TIM complexes have a specialized assembly pathway in the intermembrane space and that the local redox state of the TIM complexes may mediate translocation of inner membrane proteins.  相似文献   

8.
Mutations in the mitochondrial transacylase tafazzin, Taz1p, in Saccharomyces cerevisiae cause Barth syndrome, a disease of defective cardiolipin remodeling. Taz1p is an interfacial membrane protein that localizes to both the outer and inner membranes, lining the intermembrane space. Pathogenic point mutations in Taz1p that alter import and membrane insertion result in accumulation of monolysocardiolipin. In this study, we used yeast as a model to investigate the biogenesis of Taz1p. We show that to achieve this unique topology in mitochondria, Taz1p follows a novel import pathway in which it crosses the outer membrane via the translocase of the outer membrane and then uses the Tim9p-Tim10p complex of the intermembrane space to insert into the mitochondrial outer membrane. Taz1p is then transported to membranes of an intermediate density to reach a location in the inner membrane. Moreover, a pathogenic mutation within the membrane anchor (V224R) alters Taz1p import so that it bypasses the Tim9p-Tim10p complex and interacts with the translocase of the inner membrane, TIM23, to reach the matrix. Critical targeting information for Taz1p resides in the membrane anchor and flanking sequences, which are often mutated in Barth syndrome patients. These studies suggest that altering the mitochondrial import pathway of Taz1p may be important in understanding the molecular basis of Barth syndrome.  相似文献   

9.
A first component involved in import into the mitochondrial intermembrane space, named Mia40, has been described recently in yeast. Here, we identified the human MIA40 as a novel and ubiquitously expressed component of human mitochondria. It belongs to a novel protein family whose members share six highly conserved cysteine residues constituting a -CXC-CX9C-CX9C- motif. Human MIA40 is significantly smaller than the fungal protein and lacks the N-terminal extension including a transmembrane region and mitochondrial targeting signal. It forms soluble complexes within the intermembrane space of human mitochondria. Depletion of MIA40 in human cells by RNA interference specifically affected steady-state levels of small and cysteine-containing intermembrane space proteins like DDP1 and TIM10A, suggesting that MIA40 acts along the import pathway into the intermembrane space. Studies on the in vivo redox state of human MIA40 demonstrated that it contains intramolecular disulfide bonds. Thiol-trapping assays revealed the co-existence of different oxidation states of human MIA40 within the cell. Furthermore, we show that the twin -CX9C- motif is specifically required for import and stability of MIA40 in mitochondria. Partial mutation of this motif affects stable accumulation of MIA40 in the intermembrane space, whereas mutation of all cysteine residues in this motif inhibits import in mitochondria. Taken together, we conclude that the biogenesis and function of MIA40 in the mitochondrial intermembrane space is dependent on redox processes involving conserved cysteine residues.  相似文献   

10.
The Mohr-Tranebjaerg-Jensen deafness-dystonia-optic atrophy protein DDP/TIMM8a is translated on cytoplasmic ribosomes but targeted ultimately to the mitochondrial intermembrane space, where it is involved in mitochondrial protein import. STAM1 is a cytoplasmic signal-transducing adaptor molecule implicated in cytokine signaling. We report here a direct interaction between DDP and STAM1, identified by yeast two-hybrid screening and confirmed by co-immunoprecipitation, fusion protein "pull downs," and nuclear redistribution assays. DDP coordinates Zn(2+), and Zn(2+) was found to stimulate the DDP-STAM1 interaction in vitro. Endogenous STAM1 localizes predominantly to early endosomes, and we found no evidence that STAM1 is imported into mitochondria in vitro. Thus, the DDP-STAM1 interaction likely occurs in the cytoplasm or at the mitochondrial outer membrane. The DDP-STAM1 interaction requires a coiled-coil region in STAM1 that overlaps with the immunoreceptor tyrosine-based activation motif (ITAM), a region previously shown to be important for interaction with Jak2/3 and hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs). Thus, DDP binding may alter the interactions of STAM1 with several cytoplasmic proteins involved in cell signaling and endosomal trafficking.  相似文献   

11.
Import of proteins into mitochondria occurs by coordinated actions of preprotein translocases in the outer and inner membranes. Tim9 and Tim10 are translocase components of the intermembrane space, related to deafness-dystonia peptide 1 (DDP1). They coassemble into a hexamer, TIM9.10, which captures and chaperones precursors of inner membrane metabolite carriers as they exit the TOM channel in the outer membrane. The crystal structure of TIM9.10 reveals a previously undescribed alpha-propeller topology in which helical "blades" radiate from a narrow central pore lined with polar residues. The propeller blades are reminiscent of "tentacles" in chaperones Skp and prefoldin. In each TIM9.10 subunit, a signature "twin CX3C" motif forms two intramolecular disulfides. There is no obvious binding pocket for precursors, which we suggest employ the chaperone-like tentacles of TIM9.10 as surrogate lipid contacts. The first reported crystal structure of a mitochondrial translocase assembly provides insights into selectivity and regulation of precursor import.  相似文献   

12.
Tim23p is imported via the TIM (translocase of inner membrane)22 pathway for mitochondrial inner membrane proteins. In contrast to precursors with an NH2-terminal targeting presequence that are imported in a linear NH2-terminal manner, we show that Tim23p crosses the outer membrane as a loop before inserting into the inner membrane. The Tim8p-Tim13p complex facilitates translocation across the intermembrane space by binding to the membrane spanning domains as shown by Tim23p peptide scans with the purified Tim8p-Tim13p complex and crosslinking studies with Tim23p fusion constructs. The interaction between Tim23p and the Tim8p-Tim13p complex is not dependent on zinc, and the purified Tim8p-Tim13p complex does not coordinate zinc in the conserved twin CX3C motif. Instead, the cysteine residues seemingly form intramolecular disulfide linkages. Given that proteins of the mitochondrial carrier family also pass through the TOM (translocase of outer membrane) complex as a loop, our study suggests that this translocation mechanism may be conserved. Thus, polytopic inner membrane proteins, which lack an NH2-terminal targeting sequence, pass through the TOM complex as a loop followed by binding of the small Tim proteins to the hydrophobic membrane spanning domains.  相似文献   

13.
The small Tim proteins and the twin Cx3C motif   总被引:6,自引:0,他引:6  
The mitochondrial intermembrane space contains the 'small' Tim (translocase of inner membrane) proteins that are marked by their conserved 'twin Cx(3)C' motif separated by 11-16 residues. Together with the Tim22 complex at the inner membrane, the small Tim proteins form the TIM22 import machinery that mediates the biogenesis of polytopic inner membrane proteins. Upon first investigation, the conserved motif resembles a zinc-finger-like domain, but the spacing between the cysteine residues differs from that a canonical zinc finger. Recent publications present different views about the function of the conserved cysteines: the cysteines form a zinc-finger-like structure to coordinate zinc or, alternatively, they form juxtapositioned disulfide bonds.  相似文献   

14.
The TIM23 complex of the mitochondrial inner membrane mediates the import of preproteins that contain positively charged targeting signals. This translocase consists of the two phylogenetically related membrane-embedded subunits Tim17 and Tim23 to which four largely hydrophilic subunits, Tim50, Tim44, Tim16, and Tim14, are attached. Whereas in vitro reconstitution experiments have suggested a pore-forming capacity of recombinant Tim23, virtually nothing is known about the properties and function of Tim17. We employed a combined genetic and biochemical approach to address the function of Tim17 in preprotein translocation. Tim17 exposes an N-terminal hydrophilic stretch into the intermembrane space. Truncation of the first 11 amino acid residues of this stretch did not affect the stability or integrity of TIM23 subunits but strongly impaired the import of preproteins. Moreover, expression of the truncated Tim17 variant led to a dominant negative effect on the mitochondrial membrane potential. By an alanine-scanning approach we identified two conserved negative charges in the N terminus of Tim17 as critical for Tim17 function. The replacement of these positions by positively charged residues results in a strong growth defect, which can be cured by reverting two conserved positive charges into aspartate residues between transmembrane domains two and three of Tim17. On the basis of these observations we propose that charged residues in Tim17 are critical for the preprotein-induced gating of the TIM23 translocase.  相似文献   

15.
The mitochondrial intermembrane space contains chaperone complexes that guide hydrophobic precursor proteins through this aqueous compartment. The chaperones consist of hetero-oligomeric complexes of small Tim proteins with conserved cysteine residues. The precursors of small Tim proteins are synthesized in the cytosol. Import of the precursors requires the essential intermembrane space proteins Mia40 and Erv1 that were proposed to form a relay for disulfide formation in the precursor proteins. However, experimental evidence for a role of Mia40 and Erv1 in the oxidation of intermembrane space precursors has been lacking. We have established a system to directly monitor the oxidation of precursors during import into mitochondria and dissected distinct steps of the import process. Reduced precursors bind to Mia40 during translocation into mitochondria. Both Mia40 and Erv1 are required for formation of oxidized monomers of the precursors that subsequently assemble into oligomeric complexes. Whereas the reduced precursors can diffuse back into the cytosol, the oxidized precursors are retained in the intermembrane space. Thus, oxidation driven by Mia40 and Erv1 determines vectorial transport of the precursors into the mitochondrial intermembrane space.  相似文献   

16.
Many mitochondrial proteins are synthesized as preproteins carrying amino-terminal presequences in the cytosol. The preproteins are imported by the translocase of the outer mitochondrial membrane and the presequence translocase of the inner membrane. Tim50 and Tim23 transfer preproteins through the intermembrane space to the inner membrane. We report the crystal structure of the intermembrane space domain of yeast Tim50 to 1.83 Å resolution. A protruding β-hairpin of Tim50 is crucial for interaction with Tim23, providing a molecular basis for the cooperation of Tim50 and Tim23 in preprotein translocation to the protein-conducting channel of the mitochondrial inner membrane.  相似文献   

17.
The mitochondrial intermembrane space assembly (MIA) pathway is generally considered to be dedicated to the redox-dependent import and biogenesis of proteins localized to the intermembrane space of mitochondria. The oxidoreductase Mia40 is a central component of the pathway responsible for the transfer of disulfide bonds to intermembrane space precursor proteins, causing their oxidative folding. Here we present the first evidence that the function of Mia40 is not restricted to the transport and oxidative folding of intermembrane space proteins. We identify Tim22, a multispanning membrane protein and core component of the TIM22 translocase of inner membrane, as a protein with cysteine residues undergoing oxidation during Tim22 biogenesis. We show that Mia40 is involved in the biogenesis and complex assembly of Tim22. Tim22 forms a disulfide-bonded intermediate with Mia40 upon import into mitochondria. Of interest, Mia40 binds the Tim22 precursor also via noncovalent interactions. We propose that Mia40 not only is responsible for disulfide bond formation, but also assists the Tim22 protein in its integration into the inner membrane of mitochondria.  相似文献   

18.
The soluble Tim9p-Tim10p (Tim, translocase of inner membrane) complex of the mitochondrial intermembrane space mediates the import of the carrier proteins and is a component of the TIM22 import system. The mechanism by which the Tim9p-Tim10p complex assembles and binds the carriers is not well understood, but previous studies have proposed that the conserved cysteine residues in the 'twin CX3C' motif coordinate zinc and potentially generate a zinc-finger-like structure that binds to the matrix loops of the carrier proteins. Here we have purified the native and recombinant Tim9p-Tim10p complex, and show that both complexes resemble each other and consist of three Tim9p and three Tim10p. Results from inductively coupled plasma--mass spectrometry studies failed to detect zinc in the Tim9p-Tim10p complex. Instead, the cysteine residues seemingly formed disulfide linkages. The Tim9p-Tim10p complex bound specifically to the transmembrane domains of the ADP/ATP carrier, but had no affinity for Tim23p, an inner membrane protein that is inserted via the TIM22 complex. The chaperone-like Tim9p-Tim10p complex thus may prevent aggregation of the unfolded carrier proteins in the aqueous intermembrane space.  相似文献   

19.
Mitochondrial NADH-cytochrome b5 reductase (Mcr1p) is encoded by a single nuclear gene and imported into two different submitochondrial compartments: the outer membrane and the intermembrane space. We now show that the amino-terminal 47 amino acids suffice to target the Mcr1 protein to both destinations. The first 12 residues of this sequence function as a weak matrix-targeting signal; the remaining residues are mostly hydrophobic and serve as an intramitochondrial sorting signal for the outer membrane and the intermembrane space. A double point mutation within the hydrophobic region of the targeting sequence virtually abolishes the ability of the precursor to be inserted into the outer membrane but increases the efficiency of transport into the intermembrane space. Import of Mcr1p into the intermembrane space requires an electrochemical potential across the inner membrane, as well as ATP in the matrix, and is strongly impaired in mitochondria lacking Tom7p or Tim11p, two components of the translocation machineries in the outer and inner mitochondrial membranes, respectively. These results indicate that intramitochondrial sorting of the Mcr1 protein is mediated by specific interactions between the bipartite targeting sequence and components of both mitochondrial translocation systems.  相似文献   

20.
Tim10 and all the small Tim proteins of the mitochondrial intermembrane space contain a consensus twin CX3C Zn2+-finger motif. While disulphide bond formation between the Cys residues of this motif is essential for complex formation by the small Tim proteins, the specific role of Zn2+-binding during the import and assembly of these proteins is not clear. In this study, we investigated the effects of the biologically relevant thiol-disulphide redox molecule, glutathione, and Zn2+-binding on the oxidative folding of yeast mitochondrial Tim10 using both biochemical and biophysical methods in vitro. We show that, whilst oxidized Tim10 cannot be reduced by reduced glutathione, reduced Tim10 is effectively oxidized at levels of glutathione comparable to those found in the cytosol. The oxidized Tim10 generated in the presence of glutathione is competent for complex formation with its partner protein Tim9, confirming it has a native fold. The standard redox potential of Tim10 at pH 7.4 was determined to be -0.32 V, confirming that Tim10 is a much stronger reductant than glutathione (-0.26 V, at pH 7.4) and could therefore be oxidized rapidly by oxidized glutathione in the cytosol. However, we found that Zn2+-binding can stabilize the reduced Tim10, decreasing the rate of the oxidative folding more than tenfold. In addition, we show that protein disulphide isomerase can catalyse the oxidative folding of Tim10 provided that Zn2+ was removed. We propose that Zn2+-binding is essential to maintain the protein in a reduced and import-competent state in the cytosol, and that zinc has to be removed after the protein is imported into mitochondria to initiate protein oxidative folding and assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号