首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The S100 proteins comprise 25 calcium-signalling members of the EF-hand protein family. Unlike typical EF-hand signalling proteins such as calmodulin and troponin-C, the S100 proteins are dimeric, forming both homo- and heterodimers in vivo. One member of this family, S100B, is a homodimeric protein shown to control the assembly of several cytoskeletal proteins and regulate phosphorylation events in a calcium-sensitive manner. Calcium binding to S100B causes a conformational change involving movement of helix III in the second calcium-binding site (EF2) that exposes a hydrophobic surface enabling interactions with other proteins such as tubulin and Ndr kinase. In several S100 proteins, calcium binding also stabilizes dimerization compared to the calcium-free states. In this work, we have examined the guanidine hydrochloride (GuHCl)-induced unfolding of dimeric calcium-free S100B. A series of tryptophan substitutions near the dimer interface and the EF2 calcium-binding site were studied by fluorescence spectroscopy and showed biphasic unfolding curves. The presence of a plateau near 1.5 M GuHCl showed the presence of an intermediate that had a greater exposed hydrophobic surface area compared to the native dimer based on increased 4,4-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid fluorescence. Furthermore, 1H-15N heteronuclear single quantum coherence analyses as a function of GuHCl showed significant chemical shift changes in regions near the EF1 calcium-binding loop and between the linker and C-terminus of helix IV. Together these observations show that calcium-free S100B unfolds via a dimeric intermediate.  相似文献   

2.
The structure of bovine intestinal calcium-binding protein (ICaBP) has been determined crystallographically at a resolution of 2.3 A and refined by a least squares technique to an R factor of 17.8%. The refined structure includes all 600 non-hydrogen protein atoms, two bound calcium ions, and solvent consisting of one sulfate ion and 36 water molecules. The molecule consists of two helix-loop-helix calcium-binding domains known as EF hands, connected by a linker containing a single turn of helix. Helix-helix interactions are primarily hydrophobic, but also include a few strategic hydrogen bonds. Most of the hydrogen bonds, however, are found in the calcium-binding loops, where they occur both within a single loop and between the two. Examination of the hydrogen bonding patterns in the calcium-binding loops of ICaBP and the related protein, parvalbumin, reveals several conserved hydrogen bonds which are evidently important for loop stabilization. The primary and tertiary structural features which promote the formation of an EF hand were originally identified from the structure of parvalbumin. They are modified in light of the ICaBP structure and considered as they apply to other calcium-binding proteins. The C-terminal domain of ICaBP is a normal EF hand, with ion binding properties similar to those of the calmodulin hands, but the N-terminal domain is a variant hand whose calcium ligands are mostly peptide carbonyls. Relative to a normal EF hand, this domain exhibits a similar KD for calcium binding but a greatly reduced affinity for calcium analogs such as cadmium and the lanthanide series. Lanthanides in particular may be inappropriate models for calcium in this system.  相似文献   

3.
Dutta K  Cox CJ  Basavappa R  Pascal SM 《Biochemistry》2008,47(29):7637-7647
Mts1 is a member of the S100 family of EF-hand calcium-binding proteins. Like most S100 proteins, Mts1 exists as a dimer in solution and contains one canonical and one pseudo-EF-hand motif per monomer, each of which consists of two alpha helices connected by a loop capable of coordinating a calcium ion. The backbone dynamics of murine apo-Mts1 homodimer have been examined by nuclear magnetic resonance spectroscopy. Longitudinal and transverse relaxation data and steady-state (1)H- (15)N nuclear Overhauser effects were analyzed using model-free formalism. The extracted global correlation time is 9.94 ns. Results indicate that the protein backbone is most rigid at the dimer interface, made up of helices 1 and 4 from each monomer with mean S (2) ( S avg (2)) values approximately 0.9, flanked by helices 2 and 3 with lower S avg (2) values of 0.84 and 0.77, respectively. Each calcium-binding site along with the hinge joining the two EF-hands and the N- and C-termini are considerably more flexible than the dimer interface on a range of time scales and more flexible than the corresponding regions of other S100 proteins studied to date. As the hinge and the C-terminal tail are believed to interact with target proteins, these dynamic characteristics may have implications for Mts1 activity.  相似文献   

4.
S100B is one of the best-characterized members of the calcium-signaling S100 protein family. Most S100 proteins are dimeric, with each monomer containing two EF-hand calcium-binding sites (EF1, EF2). S100B and other S100 proteins respond to calcium increases in the cell by coordinating calcium and undergoing a conformational change that allows them to interact with a variety of cellular targets. Although several three dimensional structures of S100 proteins are available in the calcium-free (apo-) state it has been observed that these structures appear to adopt a wide range of conformations in the EF2 site with respect to the positioning of helix III, the helix that undergoes the most dramatic calcium-induced conformational change. In this work, we have determined the structure of human apo-S100B at 10 degrees C to examine whether temperature might be responsible for these structural differences. Further, we have used this data, and other available apo-S100 structures, to show that despite the range of interhelical angles adopted in the apo-S100 structures, normal Gaussian distributions about the mean angles found in the structure of human apo-S100B are observed. This finding, only obvious from the analysis of all available apo-S100 proteins, provides direct structural evidence that helix III is a loosely packed helix. This is likely a necessary functional property of the S100 proteins that facilitates the calcium-induced conformational change of helix III. In contrast, the calcium-bound structures of the S100 proteins show significantly smaller variability in the interhelical angles. This shows that calcium binding to the S100 proteins causes not only a conformational change but results in a tighter distribution of helices within the EF2 calcium binding site required for target protein interactions.  相似文献   

5.
Metastasis-associated protein S100A4 (Mts1) induces invasiveness of primary tumors and promotes metastasis. S100A4 belongs to the family of small calcium-binding S100 proteins that are involved in different cellular processes as transducers of calcium signal. S100A4 modulates properties of tumor cells via interaction with its intracellular targets, heavy chain of non-muscle myosin and p53. Here we report identification of a new molecular target of the S100A4 protein, liprin beta1. Liprin beta1 belongs to the family of leukocyte common antigen-related (LAR) transmembrane tyrosine phosphatase-interacting proteins that may regulate LAR protein properties via interaction with another member of the family, liprin alpha1. We showed by the immunoprecipitation analysis that S100A4 interacts specifically with liprin beta1 in vivo. Immunofluorescence staining demonstrated the co-localization of S100A4 and liprin beta1 in the cytoplasm and particularly at the protrusion sites of the plasma membrane. We mapped the S100A4 binding site at the C terminus of the liprin beta1 molecule between amino acid residues 938 and 1005. The S100A4-binding region contains two putative phosphorylation sites by protein kinase C and protein kinase CK2. S100A4-liprin beta1 interaction resulted in the inhibition of liprin beta1 phosphorylation by both kinases in vitro.  相似文献   

6.
S100B is a dimeric Ca(2+)-binding protein that undergoes a 90 +/- 3 degrees rotation of helix 3 in the typical EF-hand domain (EF2) upon the addition of calcium. The large reorientation of this helix is a prerequisite for the interaction between each subunit of S100B and target proteins such as the tumor suppressor protein, p53. In this study, Tb(3+) was used as a probe to examine how binding of a 22-residue peptide derived from the C-terminal regulatory domain of p53 affects the rate of Ca(2+) ion dissociation. In competition studies with Tb(3+), the dissociation rates of Ca(2+) (k(off)) from the EF2 domains of S100B in the absence and presence of the p53 peptide was determined to be 60 and 7 s(-)(1), respectively. These data are consistent with a previously reported result, which showed that that target peptide binding to S100B enhances its calcium-binding affinity [Rustandi et al. (1998) Biochemistry 37, 1951-1960]. The corresponding Ca(2+) association rate constants for S100B, k(on), for the EF2 domains in the absence and presence of the p53 peptide are 1.1 x 10(6) and 3.5 x 10(5) M(-)(1) s(-)(1), respectively. These two association rate constants are significantly below the diffusion control ( approximately 10(9) M(-)(1) s(-)(1)) and likely involve both Ca(2+) ion association and a Ca(2+)-dependent structural rearrangement, which is slightly different when the target peptide is present. EF-hand calcium-binding mutants of S100B were engineered at the -Z position (EF-hand 1, E31A; EF-hand 2, E72A; both EF-hands, E31A + E72A) and examined to further understand how specific residues contribute to calcium binding in S100B in the absence and presence of the p53 peptide.  相似文献   

7.
S100B and S100A10 are dimeric, EF‐hand proteins. S100B undergoes a calcium‐dependant conformational change allowing it to interact with a short contiguous sequence from the actin‐capping protein CapZ (TRTK12). S100A10 does not bind calcium but is able to recruit the N‐terminus of annexin A2 important for membrane fusion events, and to form larger multiprotein complexes such as that with the cation channel proteins TRPV5/6. In this work, we have designed, expressed, purified, and characterized two S100‐target peptide hybrid proteins comprised of S100A10 and S100B linked in tandem to annexin A2 (residues 1–15) and CapZ (TRTK12), respectively. Different protease cleavage sites (tobacco etch virus, PreScission) were incorporated into the linkers of the hybrid proteins. In situ proteolytic cleavage monitored by 1H‐15N HSQC spectra showed the linker did not perturb the structures of the S100A10‐annexin A2 or S100B‐TRTK12 complexes. Furthermore, the analysis of the chemical shift assignments (1H, 15N, and 13C) showed that residues T102‐S108 of annexin A2 formed a well‐defined α‐helix in the S100A10 hybrid while the TRTK12 region was unstructured at the N‐terminus with a single turn of α‐helix from D108‐K111 in the S100B hybrid protein. The two S100 hybrid proteins provide a simple yet extremely efficient method for obtaining high yields of intact S100 target peptides. Since cleavage of the S100 hybrid protein is not necessary for structural characterization, this approach may be useful as a scaffold for larger S100 complexes.  相似文献   

8.
S100A1 is a typical representative of a group of EF-hand calcium-binding proteins known as the S100 family. The protein is composed of two alpha subunits, each containing two calcium-binding loops (N and C). At physiological pH (7.2) and NaCl concentration (100 mm), we determined the microscopic binding constants of calcium to S100A1 by analysing the Ca(2+)-titration curves of Trp90 fluorescence for both the native protein and its Glu32 --> Gln mutant with an inactive N-loop. Using a chelator method, we also determined the calcium-binding constant for the S100A1 Glu73 --> Gln mutant with an inactive C-loop. The protein binds four calcium ions in a noncooperative way with binding constants of K(1) =4 +/- 2 x 10(3) m(-1) (C-loops) and K(2) approximately 10(2) m(-1) (N-loops). Only when both loops are saturated with calcium does the protein change its global conformation, exposing to the solvent hydrophobic patches, which can be detected by 2-p-toluidinylnaphthalene-6-sulfonic acid - a fluorescent probe of protein-surface hydrophobicity. S-Glutathionylation of the single cysteine residue (85) of the alpha subunits leads to a 10-fold increase in the affinity of the protein C-loops for calcium and an enormous - four orders of magnitude - increase in the calcium-binding constants of its N-loops, owing to a cooperativity effect corresponding to DeltaDeltaG = -6 +/- 1 kcal.mol(-1). A similar effect is observed upon formation of the mixed disulfide with cysteine and 2-mercaptoethanol. The glutathionylated protein binds TRTK-12 peptide in a calcium-dependent manner. S100A1 protein can act, therefore, as a linker between the calcium and redox signalling pathways.  相似文献   

9.
Potassium channel-interacting proteins (KChIPs) are EF-hand calcium-binding proteins of the recoverin/neuronal calcium sensor 1 family that co-assemble with the pore-forming Kv4 alpha-subunits and thus control surface trafficking of the voltage-gated potassium channels mediating the neuronal I(A) and cardiac I(to) currents. Different from the other KChIPs, KChIP4a largely reduces surface expression of the Kv4 channel complexes. Using solution NMR we show that the unique N terminus of KChIP4a forms a 6-turn alpha-helix that is connected to the highly conserved core of the KChIP protein via a solvent-exposed linker. As identified by chemical shift changes, N-terminal alpha-helix and core domain of KChIP4a interact with each other through the same hydrophobic surface pocket that is involved in intermolecular interaction between the N-terminal helix of Kv4alpha and KChIP in Kv4-KChIP complexes. Electrophysiological recordings and biochemical interaction assays of complexes formed by wild-type and mutant Kv4alpha and KChIP4a proteins suggest that competition of these two helical domains for the surface groove is responsible for the reduced trafficking of Kv4-KChIP4a complexes to the plasma membrane. Surface expression of Kv4 complexes may thus be controlled by an auto-inhibitory domain in the KChIP subunit.  相似文献   

10.
A role for EF-hand calcium-binding protein Mts1 (S100A4) in the phosphorylation and the assembly of myosin filaments was studied. The nonmuscle myosin molecules form bipolar filaments, which interact with actin filaments to produce a contractile force. Phosphorylation of the myosin plays a regulatory role in the myosin assembly. In the presence of calcium, Mts1 binds at the C-terminal end of the myosin heavy chain close to the site of phosphorylation by protein kinase CK2 (Ser1944). In the present study, we have shown that interaction of Mts1 with the human platelet myosin or C-terminal fragment of the myosin heavy chain inhibits phosphorylation of the myosin heavy chain by protein kinase CK2 in vitro. Mts1 might also bind directly the beta subunit of protein kinase CK2, thereby modifying the enzyme activity. Our results indicate that myosin oligomers were disassembled in the presence of Mts1. The short C-terminal fragment of the myosin heavy chain was totally soluble in the presence of an equimolar amount of Mts1 at low ionic conditions (50 mM NaCl). Depolymerization was found to be calcium-dependent and could be blocked by EGTA. Our data suggest that Mts1 can increase myosin solubility and therefore suppress its assembly.  相似文献   

11.
Miro is a highly conserved calcium‐binding GTPase at the regulatory nexus of mitochondrial transport and autophagy. Here we present crystal structures comprising the tandem EF hand and carboxy terminal GTPase (cGTPase) domains of Drosophila Miro. The structures reveal two previously unidentified ‘hidden’ EF hands, each paired with a canonical EF hand. Each EF hand pair is bound to a helix that structurally mimics an EF hand ligand. A key nucleotide‐sensing element and a Pink1 phosphorylation site both lie within an extensive EF hand–cGTPase interface. Our results indicate structural mechanisms for calcium, nucleotide and phosphorylation‐dependent regulation of mitochondrial function by Miro.  相似文献   

12.
Marlatt NM  Shaw GS 《Biochemistry》2007,46(25):7478-7487
S100B is a 21 kDa member of the S100 calcium-binding protein family. This protein comprises a symmetric homodimer with each subunit having two EF-hands arranged from four alpha-helices (I-IV). S100B binds calcium and undergoes a conformation change leading to the exposure of hydrophobic surface residues that enable the protein to interact with biological target molecules. The most significant structural change that occurs during calcium binding results in a change in the orientation of helix III with respect to helices II and IV. In this work, the calcium-sensitive conformational change has been studied by utilizing fast 1H-15N HSQC experiments and water-transfer methods to follow the amide exchange in apo-S100B and Ca-S100B at 35 degrees C. In apo-S100B, the protection factors are 2-3 orders of magnitude lower for helix III than for helix I, II, or IV. In addition, the exchange stability measured here for the dimer interface helices (I, I', IV, and IV'), in the absence of calcium, is similar to the stability obtained from chemical denaturation experiments. When calcium binds, significant decreases in the protection factors for helices I and IV indicate a modification in the stability of the dimer interface has occurred. In contrast, helix II protection factors increase slightly, which is consistent with a decreased level of surface exposure of this helix. These data have been compared with those of the monomeric S100 protein, calbindin D9k, to illustrate that upon calcium binding there is a balance maintained between the amide exchange rates in helices II and III, although largely the rates are dissimilar for each of these proteins. This distinguishing feature may be important for the calcium-induced conformational change in S100B, where calcium binding is transmitted to the dimer-forming helices.  相似文献   

13.
The S100 calcium-binding proteins are implicated in signal transduction, motility, and cytoskeletal dynamics. The three-dimensional structure of several S100 proteins revealed that the proteins form non-covalent dimers. However, the mechanism of the S100 dimerization is still obscure. In this study we characterized the dimerization of S100A4 (also named Mts1) in vitro and in vivo. Analytical ultracentrifugation revealed that apoS100A4 was present in solution as a mixture of monomers and dimers in a rapidly reversible equilibrium (K(d) = 4 +/- 2 microm). The binding of calcium promoted dimerization. Replacement of Tyr-75 by Phe resulted in the stabilization of the dimer. Helix IV is known to form the major part of the dimerization interface in homologous S100 proteins. By using the yeast two-hybrid system we showed that only a few residues of helix IV, namely Phe-72, Tyr-75, Phe-78, and Leu-79, are essential for dimerization in vivo. A homology model demonstrated that these residues form a hydrophobic cluster on helix IV. Their role is to stabilize the structure of individual subunits rather than provide specific interactions across the dimerization surface. Our mutation data showed that the specificity at the dimerization surface is not particularly stringent, which is consistent with recent data indicating that S100 proteins can form heterodimers.  相似文献   

14.
Mts1 is a member of the S100 family of Ca2+-binding proteins and is implicated in promoting tumor progression and metastasis. To better understand the structure-function relationships of this protein and to begin characterizing its Ca2+-dependent interaction with protein binding targets, the three-dimensional structure of mts1 was determined in the apo state by NMR spectroscopy. As with other S100 protein family members, mts1 is a symmetric homodimer held together by noncovalent interactions between two helices from each subunit (helices 1, 4, 1', and 4') to form an X-type four-helix bundle. Each subunit of mts1 has two EF-hand Ca2+-binding domains: a pseudo-EF-hand (or S100-hand) and a typical EF-hand that are brought into proximity by a small two-stranded antiparallel beta-sheet. The S100-hand is formed by helices 1 and 2, and is similar in conformation to other members of the S100 family. In the typical EF-hand, the position of helix 3 is similar to that of another member of the S100 protein family, calcyclin (S100A6), and less like that of other S100 family members for which three-dimensional structures are available in the calcium-free state (e.g., S100B and S100A1). The differences in the position of helix 3 in the apo state of these four S100 proteins are likely due to variations in the amino acid sequence in the C-terminus of helix 4 and in loop 2 (the hinge region) and could potentially be used to subclassify the S100 protein family.  相似文献   

15.
Backbone dynamics of homodimeric apo-S100B were studied by (15)N nuclear magnetic resonance relaxation at 9.4 and 14.1 T. Longitudinal relaxation (T(1)), transverse relaxation (T(2)), and the (15)N-[(1)H] NOE were measured for 80 of 91 backbone amide groups. Internal motional parameters were determined from the relaxation data using the model-free formalism while accounting for diffusion anisotropy. Rotational diffusion of the symmetric homodimer has moderate but statistically significant prolate axial anisotropy (D( parallel)/D( perpendicular) = 1.15 +/- 0.02), a global correlation time of tau(m) = 7.80 +/- 0.03 ns, and a unique axis in the plane normal to the molecular symmetry axis. Of 29 residues at the dimer interface (helices 1 and 4), only one has measurable internal motion (Q71), and the order parameters of the remaining 28 were the highest in the protein (S(2) = 0.80 to 0.91). Order parameters in the typical EF hand calcium-binding loop (S(2) = 0.73 to 0.87) were slightly lower than in the pseudo-EF hand (S(2) = 0.75 to 0.89), and effective internal correlation times, tau(e), distinct from global tumbling, were detected in the calcium-binding loops. Helix 3, which undergoes a large, calcium-induced conformational change necessary for target-protein binding, does not show evidence of interchanging between the apo and Ca(2+)-bound orientations in the absence of calcium but has rapid motion in several residues throughout the helix (S(2) = 0.78 to 0.88; 10 < or = tau(e) < or = 30 ps). The lowest order parameters were found in the C-terminal tail (S(2) = 0.62 to 0.83). Large values for chemical exchange also occur in this loop and in regions nearby in space to the highly mobile C-terminal loop, consistent with exchange broadening effects observed.  相似文献   

16.
S100A4, a member of the Ca(2+)-activated S100 protein family, regulates the motility and invasiveness of cancer cells. Moreover, high S100A4 expression levels correlate with poor patient survival in several cancers. Although biochemical, biophysical, and structural data indicate that S100A4 is a noncovalent dimer, it is unknown if two functional S100A4 monomers are required for the productive recognition of protein targets and the promotion of cell invasion. To address this question, we created covalently linked S100A4 dimers using a glycine rich flexible linker. The single-chain S100A4 (sc-S100A4) proteins exhibited wild-type affinities for calcium and nonmuscle myosin-IIA, retained the ability to regulate nonmuscle myosin-IIA assembly, and promoted tumor cell invasion when expressed in S100A4-deficient colon carcinoma cells. Mutation of the two calcium-binding EF-hands in one monomer, while leaving the other monomer intact, caused a 30-60-fold reduction in binding affinity for nonmuscle myosin-IIA concomitant with a weakened ability to regulate the monomer-polymer equilibrium of nonmuscle myosin-IIA. Moreover, sc-S100A4 proteins with one monomer deficient in calcium responsiveness did not support S100A4-mediated colon carcinoma cell invasion. Cross-linking and titration data indicate that the S100A4 dimer binds a single myosin-IIA target peptide. These data are consistent with a model in which a single peptide forms interactions in the vicinity of the canonical target binding cleft of each monomer in such a manner that both target binding sites are required for the efficient interaction with myosin-IIA.  相似文献   

17.
This study characterizes the calcium-bound CR I-II domain (residues 1-100) of rat calretinin (CR). CR, with six EF-hand motifs, is believed to function as a neuronal intracellular calcium-buffer and/or calcium-sensor. The secondary structure of CR I-II, defined by standard NMR methods on 13C,15N-labeled protein, contains four helices and two short interacting segments of extended structure between the calcium-binding loops. The linker between the two helix-loop-helix, EF-hand motifs is 12 residues long. Limited trypsinolysis at K60 (there are 10 other K/R residues in CR I-II) confirms that the linker of CR I-II is solvent-exposed and that other potential sites are protected by regular secondary structure. 45Ca-overlay of glutathione S-transferase (GST)-CR(1-60) and GST-CR(61-100) fusion proteins confirm that both EF-hands of CR I-II have intrinsic calcium-binding properties. The primary sequence and NMR chemical shifts, including calcium-sensitive glycine residues, also suggest that both EF-hand loops of CR I-II bind calcium. NMR relaxation, analytical ultracentrifugation, chemical cross-linking and NMR translation diffusion measurements indicate that CR I-II exists as a monomer. Calb I-II (the homologous domain of calbindin D28k) has the same EF-hand secondary structures as CR I-II, except that helix B is three residues longer and the linker has only four residues [Klaus, W., Grzesiek, S., Labhardt, A. M., Buckwald, P., Hunziker, W., Gross, M. D. & Kallick, D. A. (1999) Eur. J. Biochem. 262, 933-938]. In contrast, Calb I-II binds one calcium cation per monomeric unit and exists as a dimer. Despite close homology and similar secondary structures, CR I-II and Calb I-II probably have distinct tertiary structure features that suggest different cellular functions for the full-length proteins.  相似文献   

18.
S100A5 is a calcium binding protein of the S100 family, with one canonical and one S100-specific EF-hand motif per subunit. Although its function is still unknown, it has recently been reported to be one of the S100 proteins able to interact with the receptor for advanced glycation end products. The homodimeric solution structures of S100A5 in both the apo and the calcium(II)-loaded forms have been obtained, and show a conformational rearrangement upon calcium binding. This rearrangement involves, in particular, the hinge loop connecting the N-terminal and the C-terminal EF-hand domains, the reorientation of helix III with respect to helix IV, as common to several S100 proteins, and the elongation of helix IV. The details of the structural changes are important because they must be related to the different functions, still largely unknown, of the different members of the S100 family. For the first time for a full-length S100 protein, relaxation measurements were performed on both the apo and the calcium-bound forms. A quite large mobility was observed in the hinge loop, which is not quenched in the calcium form. The structural differences resulting upon calcium binding change the global shape and the distribution of hydrophobic and charged residues of the S100A5 homodimer in a modest but significantly different manner with respect to the closest homologues S100A4 and S100A6.  相似文献   

19.
S100A1 is an EF-hand-containing Ca(2+)-binding protein that undergoes a conformational change upon binding calcium as is necessary to interact with protein targets and initiate a biological response. To better understand how calcium influences the structure and function of S100A1, the three-dimensional structure of calcium-bound S100A1 was determined by multidimensional NMR spectroscopy and compared to the previously determined structure of apo. In total, 3354 nuclear Overhauser effect-derived distance constraints, 240 dihedral constraints, 160 hydrogen bond constraints, and 362 residual dipolar coupling restraints derived from a series of two-dimensional, three-dimensional, and four-dimensional NMR experiments were used in its structure determination (>21 constraints per residue). As with other dimeric S100 proteins, S100A1 is a symmetric homodimer with helices 1, 1', 4, and 4' associating into an X-type four-helix bundle at the dimer interface. Within each subunit there are four alpha-helices and a short antiparallel beta-sheet typical of two helix-loop-helix EF-hand calcium-binding domains. The addition of calcium did not change the interhelical angle of helices 1 and 2 in the pseudo EF-hand significantly; however, there was a large reorientation of helix 3 in the typical EF-hand. The large conformational change exposes a hydrophobic cleft, defined by residues in the hinge region, the C terminus, and regions of helix 3, which are important for the interaction between S100A1 and a peptide (TRTK-12) derived from the actin-capping protein CapZ.  相似文献   

20.
The crystal structure at 2A resolution of the Ca2+ -binding protein S100P   总被引:1,自引:0,他引:1  
S100P is a small calcium-binding protein of the S100 EF-hand-containing family of proteins. Elevated levels of its mRNA are reported to be associated with the progression to hormone independence and metastasis of prostate cancer and to be associated with loss of senescence in human breast epithelial cells in vitro. The first structure of human recombinant S100P in calcium-bound form is now reported at 2.0A resolution by X-ray diffraction. A flexible linker connects the two EF-hand motifs. The protein exists as a homodimer formed by non-covalent interactions between large hydrophobic areas on monomeric S100P. Experiments with an optical biosensor to study binding parameters of the S100P monomer interaction showed that the association rate constant was faster in the presence of calcium than in their absence, whereas the dissociation rate constant was independent of calcium. The K(d) values were 64(+/-24)nM and 2.5(+/-0.8) microM in the presence and in the absence of calcium ions, respectively. Dimerization of S100P is demonstrated in vivo using the yeast two-hybrid system. The effect of mutation of specific amino acids suggests that dimerization in vivo can be affected by amino acids on the dimer interface and in the hydrophobic core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号