首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing attention has been focused on how the retinoblastoma (RB) protein regulates cell growth. Recent evidence indicates that it is a substrate for phosphorylation by cyclin-dependent kinase-cyclin complexes and suggests that this phosphorylation modulates the ability of this protein to regulate transit through the cell cycle, perhaps in its G1 phase.  相似文献   

2.
Proline-directed protein phosphorylation and cell cycle regulation.   总被引:9,自引:0,他引:9  
Recent discoveries have converged on the emerging enzymology that governs the G1-S phase transition of the mammalian somatic cell cycle. These discoveries have led to an appreciation of the regulatory role of proline-directed protein phosphorylation in molecular signalling, and have resulted in the identification of a putative proto-oncogene.  相似文献   

3.
Iwamori N  Naito K  Sugiura K  Tojo H 《FEBS letters》2002,516(1-3):119-123
Biosynthesis of heme A, a prosthetic group of cytochrome oxidase (COX), involves an initial farnesylation of heme B. The heme O product formed in this reaction is modified by hydroxylation of the methyl group at carbon C-8 of the porphyrin ring. This reaction was proposed to be catalyzed by Cox15p, ferredoxin, and ferredoxin reductase. Oxidation of the alcohol to the corresponding aldehyde yields heme A. In the present study we have assayed heme A and heme O in yeast COX mutants. The steady state concentrations of the two hemes in the different strains studied indicate that hydroxylation of heme O, catalyzed by Cox15p, is regulated either by a subunit or assembly intermediate of COX. The heme profiles of the mutants also suggest positive regulation of heme B farnesylation by the hydroxylated intermediate formed at the subsequent step or by Cox15p itself.  相似文献   

4.
K Buchkovich  L A Duffy  E Harlow 《Cell》1989,58(6):1097-1105
p105-RB is the product of the retinoblastoma tumor suppressor gene. It is a nuclear phosphoprotein hypothesized to act as an inhibitor of cellular proliferation, yet surprisingly it is present in actively dividing cells. To look for changes in p105-RB that may regulate its activity during the cell cycle, we generated synchronized cell populations and followed their progression through the cell cycle. p105-RB is synthesized throughout the cycle, but is phosphorylated in a phase-specific manner. In the G0 and G1 phases of the cell cycle, an unphosphorylated species of the protein is the only detectable form, whereas in the S and G2/M phases, multiple phosphorylated species of p105-RB are detected.  相似文献   

5.
The retinoblastoma pathway in plant cell cycle and development   总被引:9,自引:0,他引:9  
The activity of cyclin-dependent kinases (CDKs) on specific targets mediates the temporal regulation of plant cell cycle transitions. The sequential activity of CDKs and the spatial regulation of cell proliferation during plant development, however, are still poorly understood. Understanding these aspects depends on the identification of the downstream targets and upstream modulators of CDKs and their regulation in response to mitogenic and/or differentiation signals. Current efforts to elucidate the answers to these questions are very promising; in particular, recent works reveal the essential role that the retinoblastoma pathway plays in controlling cell cycle progression and, presumably, some developmental events.  相似文献   

6.
Differential phosphorylation of the retinoblastoma protein plays a pivotal role in cell cycle regulation. The retinoblastoma protein is specifically phosphorylated during the cell cycle by cyclin-dependent kinase complexes which intersect with many cellular signaling networks. Since the loss of the retinoblastoma signaling pathways occurs in a wide variety of human tumors, understanding the significance of site-specific phosphorylation can clarify the role of selected cyclin-dependent kinase complexes during cell cycle progression. Here we describe the phosphospecificity and cellular characterization of a panel of polyclonal antibodies that recognize unique phosphorylation sites within the retinoblastoma protein. These reagents were used to validate authentic cellular retinoblastoma phosphorylation sites at amino acids 780, 795, and 807/811 correlating with the G1-S transition.  相似文献   

7.
8.
9.
MPTP is a murine homolog of the human T-cell protein tyrosine phosphatase (PTPase) and the rat PTP-S enzyme. Enzymatic activity of this ubiquitously expressed protein was demonstrated in immunoprecipitates from NIH 3T3 cells and in recombinant protein overexpressed in bacteria. Expression of beta-galactosidase-MPTP MPTP chimeric proteins in COS1 cells identified a nuclear localization signal at the carboxyl terminus of the MPTP that was sufficient to direct beta-galactosidase as well as a tagged version of the MPTP to the nucleus. Deletion analysis of amino acids within the nuclear targeting signal showed that this sequence does not conform to the bipartite type of nuclear localization signals. Furthermore, it was shown that the steady-state levels of MPTP RNA fluctuate in a cell cycle-specific manner. On the basis of these experiments, we discuss the possible function of MPTP in the cell cycle and other nuclear processes.  相似文献   

10.
《Cellular signalling》2014,26(9):1870-1877
Mitogen-inducible gene-6 (Mig-6) is a cytosolic multiadaptor protein that is best known for its role as a negative feedback regulator of epidermal growth factor receptor (EGFR) mediated signalling. Alternative roles of Mig-6 are becoming increasingly recognised. Consistently with this, Mig-6 was demonstrated to be involved in a broad spectrum of cellular events including tumour suppression which may include the induction of cellular senescence. Here, we investigated the mechanisms of Mig-6 induced premature cell senescence. Endogenous Mig-6 is poorly expressed in young fibroblasts, whilst its expression rises in cells presenting with typical features of senescence. Overexpression of Mig-6 is sufficient to trigger premature cellular senescence of early passage diploid lung fibroblasts (WI-38). Interestingly, Mig-6 overexpression reduced retinoblastoma protein (pRb) phosphorylation at the inactivating Ser249/Thr252 sites. We also found that phosphorylation of these sites in pRb is increased in the presence of the B-Raf V600E oncogenic mutation. We further show that Mig-6 overexpression reduces B-Raf V600E mediated pRb inactivation and preserves pRb function.  相似文献   

11.
12.
We show that E6 proteins from benign human papillomavirus type 1 (HPV1) and oncogenic HPV16 have the ability to alter the regulation of the G(1)/S transition of the cell cycle in primary human fibroblasts. Overexpression of both viral proteins induces cellular proliferation, retinoblastoma (pRb) phosphorylation, and accumulation of products of genes that are negatively regulated by pRb, such as p16(INK4a), CDC2, E2F-1, and cyclin A. Hyperphosphorylated forms of pRb are present in E6-expressing cells even in the presence of ectopic levels of p16(INK4a). The E6 proteins strongly increased the cyclin A/cyclin-dependent kinase 2 (CDK2) activity, which is involved in pRb phosphorylation. In addition, mRNA and protein levels of the CDK2 inhibitor p21(WAF1/CIP1) were strongly down-regulated in cells expressing E6 proteins. The down-regulation of the p21(WAF1/CIP1) gene appears to be independent of p53 inactivation, since HPV1 E6 and an HPV16 E6 mutant unable to target p53 were fully competent in decreasing p21(WAF1/CIP1) levels. E6 from HPV1 and HPV16 also enabled cells to overcome the G(1) arrest imposed by oncogenic ras. Immunofluorescence staining of cells coexpressing ras and E6 from either HPV16 or HPV1 revealed that antiproliferative (p16(INK4a)) and proliferative (Ki67) markers were coexpressed in the same cells. Together, these data underline a novel activity of E6 that is not mediated by inactivation of p53.  相似文献   

13.
In the macronucleus of the ciliate Oxytricha nova, telomeres end with single-stranded (T4G4)2 DNA bound to a heterodimeric telomere protein (alpha beta). Both the alpha and beta subunits (alpha-TP and beta-TP) were phosphorylated in asynchronously growing Oxytricha; beta-TP was phosphorylated to a much higher degree. In vitro, mouse cyclin-dependent kinases (Cdks) phosphorylated beta-TP in a lysine-rich domain that is not required for specific DNA binding but is implicated in higher order structure formation of telomeres. Therefore, phosphorylation of beta-TP could modulate a function of the telomere protein that is separate from specific DNA binding. Phosphoamino acid analysis revealed that the mouse Cdks modify predominantly threonine residues in beta-TP, consistent with the observation that beta-TP contains two consensus Cdk recognition sequences containing threonine residues. In Xenopus egg extracts that undergo cell cycling, beta-TP was phosphorylated in M phase and dephosphorylated in interphase. This work provides the first direct evidence of phosphorylation at telomeres in any organism, as well as indirect evidence for cell cycle regulation of telomere phosphorylation. The Cdc2/cyclin A and Cdc2/cyclin B kinases are required for major mitotic events. An attractive model is that phosphorylation of beta-TP by these kinases is required for the breakdown of telomere associations with each other and/or with nuclear structures prior to nuclear division.  相似文献   

14.
Major events of the cell cycle--DNA synthesis, mitosis and cell division-are regulated by a complex network of protein interactions that control the activities of cyclin-dependent kinases. The network can be modeled by a set of nonlinear differential equations and its behavior predicted by numerical simulation. Computer simulations are necessary for detailed quantitative comparisons between theory and experiment, but they give little insight into the qualitative dynamics of the control system and how molecular interactions determine the fundamental physiological properties of cell replication. To that end, bifurcation diagrams are a useful analytical tool, providing new views of the dynamical organization of the cell cycle, the role of checkpoints in assuring the integrity of the genome, and the abnormal regulation of cell cycle events in mutants. These claims are demonstrated by an analysis of cell cycle regulation in fission yeast.  相似文献   

15.
Regulation of the cell cycle is a critical aspect of cellular proliferation, differentiation, and transformation. In many cell types, the differentiation process is accompanied by a loss of proliferative capability, so that terminally differentiated cells become postmitotic and no longer progress through the cell cycle. In the experiments described here, the ocular lens has been used as a system to examine the role of the retinoblastoma protein (pRb) family in regulation of the cell cycle during differentiation. The ocular lens is an ideal system for such studies, since it is composed of just two cell types: epithelial cells, which are capable of proliferation, and fiber cells, which are postmitotic. In order to inactivate pRb in viable mice, genes encoding either a truncated version of simian virus 40 large T antigen or the E7 protein of human papillomavirus were expressed in a lens-specific fashion in transgenic mice. Lens fiber cells in the transgenic mice were found to incorporate bromodeoxyuridine, implying inappropriate entry into the cell cycle. Surprisingly, the lens fiber cells did not proliferate as tumor cells but instead underwent programmed cell death, resulting in lens ablation and microphthalmia. Analogous lens alterations did not occur in mice expressing a modified version of the truncated T antigen that was mutated in the binding domain for the pRb family. These experimental results indicate that the retinoblastoma protein family plays a crucial role in blocking cell cycle progression and maintaining terminal differentiation in lens fiber cells. Apoptotic cell death ensues when fiber cells are induced to remain in or reenter the cell cycle.  相似文献   

16.
17.
The control of metazoan cell proliferation, a problem long the domain of cell culture studies, is now being examined in developing animals. Surprisingly, developmental regulation is mediated at a variety of cell-cycle stages. Highly conserved cell-cycle control mechanisms provide a focus for studying the regulatory processes involved.  相似文献   

18.
Musashi-mediated mRNA translational control has been implicated in the promotion of physiological and pathological stem cell proliferation. During self-renewal of mammalian stem cells, Musashi has been proposed to act to repress the translation of mRNAs encoding inhibitors of cell cycle progression. By contrast, in maturing Xenopus oocytes Musashi activates translation of target mRNAs that encode proteins promoting cell cycle progression. The mechanisms directing Musashi to differentially control mRNA translation in mammalian stem cells and Xenopus oocytes is unknown. In this study, we demonstrate that the mechanisms defining Musashi function lie within the cellular context. Specifically, we show that murine Musashi acts as an activator of translation in maturing Xenopus oocytes while Xenopus Musashi functions as a repressor of target mRNA translation in mammalian cells. We further demonstrate that within the context of a primary mammalian neural stem/progenitor cell, Musashi can be converted from a repressor of mRNA translation to an activator of translation in response to extracellular stimuli. We present current models of Musashi-mediated mRNA translational control and discuss possible mechanisms for regulating Musashi function. An understanding of these mechanisms presents exciting possibilities for development of therapeutic targets to control physiological and pathological stem cell proliferation.  相似文献   

19.
Purkinje cells are vulnerable to a number of physical, chemical, and genetic insults during development and maturity. Normal development of these cells depends on the cell-cell interactions between granule and astroglial cell populations. Apoptotic death in Purkinje neurons had been shown to be associated with cell cycle activation, and new DNA synthesis is associated with Purkinje cell death in staggerer and lurcher mutant mice. Here using an in vitro organotypic slice culture model from 9 (P9) and 4 days (P4) old postnatal rats we show that the cyclin dependent kinase (cdk) inhibitors (roscovitine, olomoucine, and flavopiridol) protect the Purkinje cells from cell death. The results are more pronounced in the cerebellar sections from P4 rats. Analysis of Purkinje neurons in sections from P4 rats after 1 week of culturing showed that while there were very limited calbindin positive neurons in the untreated sections the cdk inhibitor treated sections had a notably higher number. Although treatment with cdk inhibitors inhibited Purkinje cell loss significantly, the morphology of these neurons was abnormal, with stunted dendrites and axons. Since the retinoblastoma protein (Rb) is the major pocket protein involved in determining the differentiated state of neurons we examined the effect of over-expressing Rb in the organotypic cultures. Rb overexpression significantly inhibited the Purkinje cell death and these neurons maintained their normal morphology. Thus our studies show that the cell death in Purkinje neurons observed in organotypic cultures is cell cycle dependent and the optimal survival requires Rb.  相似文献   

20.
Ataxia telangiectasia mutated protein (ATM) is a member of the phosphatidylinositol‐3 kinase (PI3K) family, which has a role in the cellular response to DNA double‐strand breaks (DSBs). In the present study, we evaluated the role of ATM in cell‐cycle control in dopaminergic rat neuroblastoma B65 cells. For this purpose, ATM activity was either inhibited pharmacologically with the specific inhibitor KU‐55933, or the ATM gene was partially silenced by transfection with small interfering RNA (siRNA). Our data indicate that although ATM inhibition did not affect the cell cycle, both treatments specifically decreased the levels of cyclin A and retinoblastoma protein (pRb), phosphorylated at Ser780. Furthermore, ATM inhibition decreased the active form of p53, which is phosphorylated at Ser15, and also decreased Bax and p21 expression. Using H2O2 as a positive control of DSBs, caused a rapid pRb phosphorylation, this was prevented by KU‐55933 and siRNA treatment. Collectively, our data demonstrate how a new molecular network on ATM regulates the cell cycle through the control of pRb phosphorylation. These findings support a new target of ATM. J. Cell. Biochem. 110: 210–218, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号