首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of chicken erythrocyte histone H5 with trypsin in a high-ionic-strength medium results in very rapid initial digestion and the formation of a 'limiting' resistant product peptide. Under these solution conditions the H5 molecule is maximally folded by spectroscopic criteria and it is concluded that the resistant peptide, GH5, represents a globular folded region of the molecule whilst the rapidly digested parts are disordered. The peptide GH5 is shown to comprise the sequence 22-100. In support of this conclusion it is shown that whilst intact histone H5 is hydrodynamically far from being a compact globular shape, peptide GH5 is approximately spherical by hydrodynamic and scattering criteria. Further more, peptide GH5 retains all the alpha-helical structure of intact H5 (circular dichroism) and appears to also maintain all the tertiary structure (nuclear magnetic resonance). It follows that in solution at high ionic strength, histone H5 consists of three domains: an N-terminal disordered region 1-21, a compact globular central domain 22-100 and a long disordered C-terminal chain 101-185. Structural parallels are drawn with the three-domain structure of the histone H1 molecule.  相似文献   

2.
The complete amino acid sequence of a minor isoform (H1.2) of histone H1 from the nematode Caenorhabditis elegans was determined. The amino acid chain consists of 190 residues and has a blocked N-terminus. Histone subtype H1.2 is 17 residues shorter than the major isoform H1.1, mainly as the result of deletions of short peptide fragments. Considerable divergence from isoform H1.1 has occurred in the N-terminal domain and the very C-terminus of the molecule, but the central globular domain and most of the C-terminal domain, including two potential phosphorylation sites, have been well conserved. Secondary-structure predictions for both H1 isoforms reveal a high potential for helix formation in the N-terminal region 1-33 of isoform H1.1 whereas the corresponding region in isoform H1.2 has low probability of being found in alpha-helix. No major differences in secondary structure are predicted for other parts of both H1 subtypes. The aberrant conformation of isoform H1.2 may be indicative of a significantly different function.  相似文献   

3.
The condensation of DNA by the C-terminal domain of histone H1 has been studied by circular dichroism in physiological salt concentration (0.14 M NaF). As the intact H1 molecule, its C-terminal domain induces the so-called psi state of DNA that is characterized by a nonconservative circular dichroism spectrum which is currently attributed to ordered aggregation of the DNA molecules. On a molar basis, intact H1 and its C-terminal domain give spectra of similar intensity. Neither the globular domain of H1 nor an N-terminal fragment, that includes both the globular and N-terminal domains, has any effect on the conservative circular dichroism of DNA. From these results it is concluded that the condensation of DNA mediated by histone H1 is mainly due to its C-terminal domain. The effect of the salt concentration and the size of DNA molecules on the circular dichroism of the complexes are also examined.  相似文献   

4.
Digestion of calf thymus H1 histone with thrombin cleaves the molecule at the sequence -(Pro)-Lys-Lys-Ala-, corresponding to a point approximately 122 residues from the N-terminus (about 56% along the molecule). The N-terminal fragment is shown by proton nuclear magnetic resonance (NMR) to possess the globular structure of the intact histome H1 molecule, whereas the C-terminal fragment appears to possess little or no structure. The N-terminal fragment separates into two peaks on an ion-exchange column, one of which is shown to originate from a single subfraction of calf thymus histone H1 and the other to originate from the other subfractions, by detailed comparison of the NMR spectra. It thus seems that the structure of the H1 histone in solution under physiological conditions consists of a globular head with a highly basic random coil tail. It is suggested that the globular head has a specific binding site on the subunit structure of the chromosome.  相似文献   

5.
Eukaryotic linker or H1 histones modulate DNA compaction and gene expression in vivo. In mammals, these proteins exist as multiple isotypes with distinct properties, suggesting a functional significance to the heterogeneity. Linker histones typically have a tripartite structure composed of a conserved central globular domain flanked by a highly variable short N-terminal domain and a longer highly basic C-terminal domain. We hypothesized that the variable terminal domains of individual subtypes contribute to their functional heterogeneity by influencing chromatin binding interactions. We developed a novel dual color fluorescence recovery after photobleaching assay system in which two H1 proteins fused to spectrally separable fluorescent proteins can be co-expressed and their independent binding kinetics simultaneously monitored in a single cell. This approach was combined with domain swap and point mutagenesis to determine the roles of the terminal domains in the differential binding characteristics of the linker histone isotypes, mouse H1(0) and H1c. Exchanging the N-terminal domains between H1(0) and H1c changed their overall binding affinity to that of the other variant. In contrast, switching the C-terminal domains altered the chromatin interaction surface of the globular domain. These results indicate that linker histone subtypes bind to chromatin in an intrinsically specific manner and that the highly variable terminal domains contribute to differences between subtypes. The methods developed in this study will have broad applications in studying dynamic properties of additional histone subtypes and other mobile proteins.  相似文献   

6.
Bharath MM  Chandra NR  Rao MR 《Proteins》2002,49(1):71-81
In eukaryotes, histone H1 promotes the organization of polynucleosome filaments into chromatin fibers, thus contributing to the formation of an important structural framework responsible for various DNA transaction processes. The H1 protein consists of a short N-terminal "nose," a central globular domain, and a highly basic C-terminal domain. Structure prediction of the C-terminal domain using fold recognition methods reveals the presence of an HMG-box-like fold. We recently showed by extensive site-directed and deletion mutagenesis studies that a 34 amino acid segment encompassing the three S/TPKK motifs, within the C-terminal domain, is responsible for DNA condensing properties of H1. The position of these motifs in the predicted structure corresponds exactly to the DNA-binding segments of HMG-box-containing proteins such as Lef-1 and SRY. Previous analyses have suggested that histone H1 is likely to bend DNA bound to the C-terminal domain, directing the path of linker DNA in chromatin. Prediction of the structure of this domain provides a framework for understanding the higher order of chromatin organization.  相似文献   

7.
The mammalian prion protein (PrP) is composed of an unstructured flexible N-terminal region and a C-terminal globular domain. We examined the import of PrP into the endoplasmic reticulum (ER) of neuronal cells and show that information present in the C-terminal globular domain is required for ER import of the N terminus. N-terminal fragments of PrP, devoid of structural domains located in the C terminus, remained in the cytosol with an uncleaved signal peptide and were rapidly degraded by the proteasome. Conversely, the separate C-terminal domain of PrP, comprising the highly ordered helix 2-loop-helix 3 motif, was entirely imported into the ER. As a consequence, two PrP mutants linked to inherited prion disease in humans, PrP-W145Stop and PrP-Q160Stop, were partially retained in the cytosol. The cytosolic fraction was characterized by an uncleaved N-terminal signal peptide and was degraded by the proteasome. Our study identified a new regulatory element in the C-terminal globular domain of PrP necessary and sufficient to promote import of PrP into the ER.  相似文献   

8.
Trypsin digestion of the protamine-like protein from Spisula solidissima has revealed the existence of an internal resistant core. The peptide contains 75 amino acid residues, and its primary structure shows some conserved sequences that are common to those found in the core of the somatic histone H5 from chicken erythrocytes. The secondary structure of this core exhibits 33% antiparallel beta-sheet, 18% beta-turns, 37% random coil, and only 10% alpha-helix, in contrast to histone H5. Hydrodynamic measurements indicate a compact globular assembly for the tertiary structure of this peptide, when compared to the more extended shape observed for the whole protein. The possible relatedness of this protein to the histone H1 family is discussed.  相似文献   

9.
1. Histones H1 and H5 in chromatin and in free solution can be cross-linked to higher multimers. Is this due to a specific protein/protein interaction? If so, this interaction might be the structural basis of the condensation of the chromosomal nucleofilament, known to be mediated by histones H1 and H5. 2. Since only the central domain of H1 and H5 exhibits tertiary folding and globular structure, this is the most likely site of specific interaction. 3. Formaldehyde has been used to test whether the central domains of histone H1 from calf thymus or from sea urchin sperm or histone H5 from chicken erythrocytes self-interact. 4. The cross-linking shown by each globular peptide was compared with that of its parent histone. 5. In all three cases the peptide cross-linked to a much lower extent than its intact parent histone and the observed cross-linked rates were roughly in proportion to the relative number of lysine residues parent histone and peptide. 6. It is concluded that there is no specific self-interaction between the globular domains of either H1 or H5 molecules in free solution. 7. This result suggests that specific H1/H1 protein/protein interactions are not the basic cause of chromatin condensation.  相似文献   

10.
H1 histones bind to DNA as they enter and exit the nucleosome. H1 histones have a tripartite structure consisting of a short N-terminal domain, a highly conserved central globular domain, and a lysine-and arginine-rich C-terminal domain. The C-terminal domain comprises approximately half of the total amino acid content of the protein, is essential for the formation of compact chromatin structures, and contains the majority of the amino acid variations that define the individual histone H1 family members. This region contains several cell cycle-regulated phosphorylation sites and is thought to function through a charge-neutralization process, neutralizing the DNA phosphate backbone to allow chromatin compaction. In this study, we use fluorescence microscopy and fluorescence recovery after photobleaching to define the behavior of the individual histone H1 subtypes in vivo. We find that there are dramatic differences in the binding affinity of the individual histone H1 subtypes in vivo and differences in their preference for euchromatin and heterochromatin. Further, we show that subtype-specific properties originate with the C terminus and that the differences in histone H1 binding are not consistent with the relatively small changes in the net charge of the C-terminal domains.  相似文献   

11.
Restricted chymotrypsin digestion of calf thymus H1 histone gives two fragments, residues 1--106 and 107--C-terminal. These were studied by proton magnetic resonance and circular dichroism. The N-terminal fragment exhibited some salt-induced structure in aqueous solution, but this did not parallel the globular structure of the intact H1 molecule. Comparison of circular dichroism results with helix predictions for this portion of the molecule suggests that the secondary structure may be the same in this fragment as it is in the corresponding region of the whole molecule. The C-terminal fragments show very little salt-induced structure. The N-terminal fragments binds to DNA very weakly, but the C-terminal fragment binds as strongly as the whole molecule. In the C-terminal fragment, about one quarter of the lysine residues are not bound to the DNA in water, but initial increase of salt concentration causes them to become bound. This increasing binding occurs under the same ionic conditions that cause chromatin condensation and condensation of H1 - DNA complexes, and it is suggested that there may be a connection between these phenomena.  相似文献   

12.
Using limited chymotrypsin and trypsin digestion of isolated Physarum histone H1 labeled in vivo in postsynthetically added N epsilon-methyl groups of lysine we show that: --there is no postsynthetic methylation in the central globular domain of H1, --a moderate number of methylated sites occurs in the N-terminal fragment and the part of the C-terminal fragment directly adjacent to the globular domain (the main site of interphase phosphorylation), --the most intensively methylated region occurs within the sequence located in an extended part of the C-terminal fragment, distant to the globular domain and the main site of interphase phosphorylation.  相似文献   

13.
A complex derived from chromatin containing one molecule of each of histones H2A, H2B, H3, and H4, termed core protein, was studied by 13C and 1H nuclear magnetic resonance. 13C line widths, when analyzed and compared with those of native and thermally unfolded representative globular proteins, showed that regions of the core protein possess considerable mobility. Studies of Calpha and Cbeta line widths, and Calpha spin-spin relaxation times, show that this mobility arises from sections of random-coil polypeptide. It is argued that these regions are N-terminal "tails", attached to C-terminal globular polypeptides. The 270-MHz 1H nuclear magnetic resonance spectrum shows numerous ring current shifted resonances, indicating that the C-terminal globular domain has a precise tertiary structure. The globular domain most likely forms the histone "core" of the chromatin monomer particle, whilst the basic tails probably wind around the grooves of the double helix, enabling the basic side chains to interact with the DNA phosphate groups. Some biological implications of this model are considered.  相似文献   

14.
The amino acid sequences of the two variants (H1a 121 residues and H1b 119 residues) of the sperm-specific histone H1 from the polychaete annelid Platynereis dumerilii have been completely established. Comparison of the sequences of these two variants shows one deletion of two residues in histone H1b and 22 substitents, of which most occur in the globular domain. The two variants differ highly in a sequence of nine residues adjacent to the conservative phenylalanine residue of histone H1 (64-72 in H1a, 62-70 in H1b) which makes H1a less hydrophobic than H1b. The small molecular size of Platynereis H1a and H1b is a unique feature among the histones H1 of which the size ranges between 189 residues (chicken erythrocyte H5) and 248 residues (sea urchin sperm H1). H1a and H1b have short N- and C-terminal basic domains but the size of the globular domain (approximately equal to 80 residues) is similar to that of other H1s. In the globular region the variant H1a exhibits a close relationship with somatic or sperm H1s whereas the variant H1b is more related to H5 histones.  相似文献   

15.
DnaG is the primase that lays down RNA primers on single-stranded DNA during bacterial DNA replication. The solution structure of the DnaB-helicase-binding C-terminal domain of Escherichia coli DnaG was determined by NMR spectroscopy at near-neutral pH. The structure is a rare fold that, besides occurring in DnaG C-terminal domains, has been described only for the N-terminal domain of DnaB. The C-terminal helix hairpin present in the DnaG C-terminal domain, however, is either less stable or absent in DnaB, as evidenced by high mobility of the C-terminal 35 residues in a construct comprising residues 1-171. The present structure identifies the previous crystal structure of the E. coli DnaG C-terminal domain as a domain-swapped dimer. It is also significantly different from the NMR structure reported for the corresponding domain of DnaG from the thermophile Bacillus stearothermophilus. NMR experiments showed that the DnaG C-terminal domain does not bind to residues 1-171 of the E. coli DnaB helicase with significant affinity.  相似文献   

16.
Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain (ΔN-hH1.4). The ΔN-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that ΔN-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.  相似文献   

17.
H1 subtypes are involved in chromatin higher-order structure and gene regulation. H1 has a characteristic three-domain structure. We studied the length variation of the available H1 subtypes and showed that the length of the N-terminal and C-terminal domains was more variable than that of the central domain. The N-terminal and C-terminal domains were of low sequence complexity both at the nucleotide and at the amino acid level, whereas the globular domain was of high complexity. In most subtypes, low complexity was due only to cryptic simplicity, which reflects the clustering of a number of short and often imperfect sequence motifs. However, a subset of subtypes from eubacteria, plants, and invertebrates contained tandem repeats of short amino acid motifs (four to 12 residues), which could amount to a large proportion of the terminal domains. In addition, some other subtypes, such as those of Drosophila and mammalian H1t, were only marginally simple. The coexistence of these three kinds of subtypes suggests that the terminal domains could have originated in the amplification of short sequence motifs, which would then have evolved by point mutation and further slippage.  相似文献   

18.
Molecular modeling of the chromatosome particle   总被引:4,自引:2,他引:2  
In an effort to understand the role of the linker histone in chromatin folding, its structure and location in the nucleosome has been studied by molecular modeling methods. The structure of the globular domain of the rat histone H1d, a highly conserved part of the linker histone, built by homology modeling methods, revealed a three-helical bundle fold that could be described as a helix–turn–helix variant with its characteristic properties of binding to DNA at the major groove. Using the information of its preferential binding to four-way Holliday junction (HJ) DNA, a model of the domain complexed to HJ was built, which was subsequently used to position the globular domain onto the nucleosome. The model revealed that the primary binding site of the domain interacts with the extra 20 bp of DNA of the entering duplex at the major groove while the secondary binding site interacts with the minor groove of the central gyre of the DNA superhelix of the nucleosomal core. The positioning of the globular domain served as an anchor to locate the C-terminal domain onto the nucleosome to obtain the structure of the chromatosome particle. The resulting structure had a stem-like appearance, resembling that observed by electron microscopic studies. The C-terminal domain which adopts a high mobility group (HMG)-box-like fold, has the ability to bend DNA, causing DNA condensation or compaction. It was observed that the three S/TPKK motifs in the C-terminal domain interact with the exiting duplex, thus defining the path of linker DNA in the chromatin fiber. This study has provided an insight into the probable individual roles of globular and the C-terminal domains of histone H1 in chromatin organization.  相似文献   

19.
The site-specific phosphorylation of bovine histone H1 by protein kinase C was investigated in order to further elucidate the substrate specificity of protein kinase C. Protein kinase C was found to phosphorylate histone H1 to 1 mol per mol. Using N-bromosuccinimide and thrombin digestions, the phosphorylation site was localized to the globular region of the protein, containing residues 71-122. A tryptic peptide containing the phosphorylation site was purified. Modification of the phosphoserine followed by amino acid sequence analysis demonstrated that protein kinase C phosphorylated histone H1 on serine 103. This sequence, Gly97-Thr-Gly-Ala-Ser-Gly-Ser(PO4)-Phe-Lys105, supports the contention that basic amino acid residues C-terminal to the phosphorylation site are sufficient determinants for phosphorylation by protein kinase C.  相似文献   

20.
The influence of the N- and C-terminal tails with respect to the conformation of the H1 central domain was investigated by studying the changes of both dichroism circular and absorption spectra during the course of limited tryptic digestion of histones H1 from calf thymus and from the fruit fly Ceratitiscapitata. The removal of the terminal tails of histone H1 results in a conformational change of the globular domain and the results suggest that the mutual interactions of the more charged N- and C-terminal regions with the central region of H1 modulate the precise structure of the globular head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号