首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  相似文献   

2.
Consensus DNA sequences from human, mouse and/or rat were used to design oligonucleotide primers for equine homologues of exons 16, 17 and 20-23 of potassium chloride co-transporter (SLC12A4) and exons 10, 11 and 3, 4, respectively, for two amino acid transporters (SLC7A10 and SLC7A9). DNA sequences of the PCR products showed high sequence identity to these regions. Equine BAC clones were obtained for SLC12A4 and SLC7A10 and mapped to equine chromosomes ECA3p13 and ECA10p15, respectively, by fluorescence in situ hybridization (FISH). Several single nucleotide polymorphisms (SNP) were found. Substitutions of A/G were found within exon 17 of SLC12A4, within intron 11 of SLC7A10 and within intron 3 of SLC7A9. The SNP associated with SLC7A10 and SLC7A9 were sufficiently polymorphic to investigate associations with erythrocyte fragility among a group of 20 thoroughbred horses. A non-parametric rank-sum test showed a weak association between erythrocyte fragility and the SNP associated with SLC7A10 (P < 0.05).  相似文献   

3.
The glutamine amino acid transporter solute carrier family 38 member 1 (SLC38A1) is associated with the occurrence and progression of solid tumors. However, it has not yet been assessed in patients with hematologic malignancy. Herein, we investigated SLC38A1 expression and explored its clinical implications in acute myeloid leukemia (AML). The results showed that patients with high SLC38A1 expression had a lower mutation rate of NPM1 gene and higher incidence of adverse-risk karyotype (p = 0.0010 and 0.0051, respectively). Patients with a high level of SLC38A1 expression presented significantly shorter overall survival in whole-cohort, chemotherapy-only, and non-inv(16) AML (p = 0.0049, 0.0247, and 0.0005 respectively). Moreover, both univariate and multivariate analyses showed that high SLC38A1 expression was an independent unfavorable prognostic biomarker for AML (p = 0.0057 and 0.0483, respectively). In summary, our study revealed SLC38A1 as a valuable prognostic and predictive marker for AML. Further, glutamine transporter SLC38A1 might serve as a potential target for the development of novel therapeutic drugs in the treatment of AML.  相似文献   

4.
目的:探讨可溶性载体2家族成员9基因(SLC2A9)rs1014290位点的单核苷酸多态性与北方汉族地区男性原发性痛风的发病的相关性。方法:选取404例原发性痛风男性患者和412名健康体检者,分别检测其血清尿酸、血脂、肾功等生化指标,同时提取外周血DNA,应用连接酶检测反应(LDR)法分析其SLC2A9基因rs1014290位点基因型和等位基因频率。结果:痛风组空腹血糖、尿酸(UA)、甘油三酯(TG)、胆固醇(TC)、收缩压、BMI、肌酐(Cr)水平均显著高于对照组,差异有统计学意义(P0.05)。痛风组SLC2A9基因rs1014290位点各基因型频率(CC:12.8%;CT:53.5%;TT:38.7%)与对照组(CC:16.2%;CT:50.9%;TT:32.9%)相比差异有统计学意义(X2=3.978,P=0.041);两组的等位基因频率相比差异无统计学意义(X2=0.314,P=0.496)。结论:SLC2A9基因rs1014290位点多态性可能与我国北方汉族男性原发性痛风的易感性相关,携带TT基因型的个体更易患痛风。  相似文献   

5.
Autophagy, a self-catabolic process, has been found to be involved in abrogating the proliferation and metastasis of breast cancer. SLC9A3R1 (solute carrier family 9, subfamily A [NHE3, cation proton antiporter 3], member 3 regulator 1), a multifunctional scaffold protein, is involved in suppressing breast cancer cells proliferation and the SLC9A3R1-related signaling pathway regulates the activation of autophagy processes. However, the precise regulatory mechanism and signaling pathway of SLC9A3R1 in the regulation of autophagy processes in breast cancer cells remains unknown. Here, we report that the stability of BECN1, the major component of the autophagic core lipid kinase complex, is augmented in SLC9A3R1-overexpressing breast cancer MDA-MB-231 cells, subsequently stimulating autophagy by attenuating the interaction between BECN1 and BCL2. Initially, we found that SLC9A3R1 partially stimulated autophagy through the PTEN-PI3K-AKT1 signaling cascade in MDA-MB-231 cells. SLC9A3R1 then attenuated the interaction between BECN1 and BCL2 to stimulate the autophagic core lipid kinase complex. Further findings revealed that SLC9A3R1 bound to BECN1 and subsequently blocked ubiquitin-dependent BECN1 degradation. And the deletion of the C-terminal domain of SLC9A3R1 resulted in significantly reduced binding to BECN1. Moreover, the lack of C-terminal of SLC9A3R1 neither reduced the ubiquitination of BECN1 nor induced autophagy in breast cancer cells. The decrease in BECN1 degradation induced by SLC9A3R1 resulted in the activity of autophagy stimulation in breast cancer cells. These findings indicate that the SLC9A3R1-BECN1 signaling pathway participates in the activation of autophagy processes in breast cancer cells.  相似文献   

6.
为寻找视网膜色素变性的致病基因,从120个家系收集视网膜色素变性先证者,制备基因组DNA。应用PCR―异源双链-SSCP法,分析GUCA1B基因4个外显子、GNGT1基因编码区和RGS9基因视网膜特异性转录区,寻找基因变异。序列分析确定突变。结果表明,31人的GUCA1B基因外显子1存在T/C多态。所有先证者中均未检测到GUCA1B、GNGT1和RGS9基因突变。认为本组病例未发现GUCA1B、GNGT1和RGS9基因的突变。 Abstract:To screen possible disease-causing mutations in the GUCA1B gene,GNGT1 gene,and the alternative-splicing region of RGS9 gene in 120 probands with retinitis pigmentosa,genomic DNA was collected from 120 probands with retinitis pigmentosa out of 120 families.The coding sequences of the GUCA1B and GNGT1 genes and the alternative splicing region of the RGS9 gene were analyzed by using PCR-heteroduplex-SSCP method.Mutation was confirmed by DNA sequencing.A T/C polymorphism was identified in exon 1 of the GUCA1B gene in 31 of the 120 probands.Heteroduplex-SSCP analysis of the GUCA1B and GNGT1 coding regions and RGS9 alternative splicing region showed no mutations in 120 patients with retinitis pigmentosa.We found no evidence that mutation in GUCA1B,GNGT1,or RGS9 gene is a cause of retinitis pigmentosa.  相似文献   

7.
Following superficial injury, neighbouring gastric epithelial cells close the wound by rapid cell migration, a process called epithelial restitution. Na+/H+ exchange (NHE) inhibitors interfere with restitution, but the role of the different NHE isoforms expressed in gastric pit cells has remained elusive. The role of the basolaterally expressed NHE1 (Slc9a1) and the presumably apically expressed NHE2 (Slc9a2) in epithelial restitution was investigated in the nontransformed rat gastric surface cell line RGM1. Migration velocity was assessed by loading the cells with the fluorescent dye DiR and following closure of an experimental wound over time. Since RGM1 cells expressed very low NHE2 mRNA and have low transport activity, NHE2 was introduced by lentiviral gene transfer. In medium with pH 7.4, RGM1 cells displayed slow wound healing even in the absence of growth factors and independently of NHE activity. Growth factors accelerated wound healing in a partly NHE1‐dependent fashion. Preincubation with acidic pH 7.1 stimulated restitution in a NHE1‐dependent fashion. When pH 7.1 was maintained during the restitution period, migratory speed was reduced to ~10% of the speed at pH 7,4, and the residual restitution was further inhibited by NHE1 inhibition. Lentiviral NHE2 expression increased the steady‐state pHi and reduced the restitution velocity after low pH preincubation, which was reversible by pharmacological NHE2 inhibition. The results demonstrate that in RGM1 cells, migratory velocity is increased by NHE1 activation, while NHE2 activity inhibit this process. A differential activation of NHE1 and NHE2 may therefore, play a role in the initiation and completion of the epithelial restitution process.  相似文献   

8.
《Epigenetics》2013,8(4):579-586
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.  相似文献   

9.
Glioblastoma (GBM) is the most frequent and inevitably lethal primary brain cancer in adults. It is recognized that the overexpression of the endosomal Na+/H+ exchanger NHE9 is a potent driver of GBM progression. Patients with NHE9 overexpression have a threefold lower median survival relative to GBM patients with normal NHE9 expression, using available treatment options. New treatment strategies tailored for this GBM subset are much needed. According to the prevailing model, NHE9 overexpression leads to an increase in plasma membrane density of epidermal growth factor receptors (EGFRs) which consequently enhances GBM cell proliferation and migration. However, this increase is not specific to EGFRs. In fact, the hallmark of NHE9 overexpression is a pan‐specific increase in plasma membrane receptors. Paradoxically, we report that this gain of function in NHE9 can be exploited to effectively target GBM cells for destruction. When exposed to gold nanoparticles, NHE9 overexpressing GBM cells accumulated drastically high amounts of gold via receptor‐mediated endocytosis, relative to control. Irradiation of these cells with near‐infrared light led to apoptotic tumour cell death. A major limitation for delivering therapeutics to GBM cells is the blood‐brain barrier (BBB). Here, we demonstrate that macrophages loaded with gold nanoparticles can cross the BBB, deliver the gold nanoparticles and effect the demise of GBM cells. In combination with receptor tyrosine kinase inhibition, we show this approach holds great promise for a new GBM‐targeted therapy.  相似文献   

10.
Fumonisin B1 (FB1) is a compound that occurs frequently in rural foods and feeds, creating health hazards. When ingested, FB1 does not appear to change in structure and is mostly excreted unchanged in faeces within 24 h. Twenty human stool samples obtained from rural school children of Vulamehlo, south of Durban (South Africa), were analysed for FB1, as well as 23 urban control samples obtained from various households within the Durban metropolitan area. The samples were freeze-dried and ground to a fine powder. A fraction of each sample was extracted three times with aqueous ethylenediaminetetraacetic acid at pH 5.2. The pooled extracts were purified using reversed phase C18 solid phase extraction cartridges. Analytical high performance liquid chromatography was used to quantitate the amount of FB1 as an o-phthaldialdehyde (OPA) derivative in the extracts. The rural (35%) and the urban samples (9%) showed the presence of FB ranging from 790 to 19 560 ng g-1 of freeze dried stool. It was concluded that this method could be used as a routine biomarker for short term human exposure to FB1 in contaminated food.  相似文献   

11.
GDF9B protein plays a critical role in growth and differentiation of early ovarian follicles. In Inverdale and Hanna sheep, mutations in exon-2 of GDF9B gene have been recorded to show increased ovulation rate in heterozygous condition whereas homozygotes are infertile. Present screen study was carried out to explore the presence of these reported mutations in Corriedale and Local Kashmir Valley sheep with high rate of twinning. Exon-2 of GDF9B gene was amplified and the polymorphism was explored by SSCP technique. In the process three different bandings were observed. Later on these patterns corresponded with three different allelic forms on nucleotide sequencing. Phylogenetic analysis revealed that the nucleotide sequences of alleles observed in the present study and that of a published sequence of sheep were having the same point of origin. The results were also compared with goats, large ruminants and humans. The allelic frequencies of allele A and B were 0.64 and 0.36, respectively in Corriedale sheep whereas the allelic frequencies of all the three alleles in Kashmir Valley sheep were 0.60, 0.34 and 0.06. SNP “C” of the designated genotype AC was observed to pronounce a significant effect on litter size with average litter size going up by 0.63 as compared with the nearest genotype AB wherein the litter size was 1.29 ± 0.05. The average litter size between AA and AB genotypes did not vary significantly.  相似文献   

12.
Chen XR  Chen M  He HH  Zhu CL  Peng XS  He XP  Fu JR  Ouyang LJ 《应用生态学报》2011,22(5):1169-1174
通过水培法对协青早B∥协青早B/东乡野生稻BC1F9群体221个株系低磷耐性进行了鉴定,测定了株高、叶龄、黄叶数、地上部干物质量等形态指标及丙二醛(MDA)、可溶性糖和地上部磷含量等生理指标,计算了磷效率,并对各指标间相关性进行了分析.结果表明:221个株系的7个指标均显示出差异性,耐性株系在低磷胁迫下表现为相对叶龄、相对株高、相对地上部干物质量和相对可溶性糖含量较高,相对黄叶数和相对MDA含量较低,相对地上部磷含量差异不明显;磷效率与磷利用效率和磷吸收效率均呈正相关,其中磷利用效率与磷效率达到极显著水平(P<0.01),表明东乡野生稻回交重组自交系中耐性株系低磷耐性原因主要是具有高磷利用效率,即其单位吸磷量干物质合成力较高.  相似文献   

13.
通过水培法对协青早B//协青早B/东乡野生稻BC1F9群体221个株系低磷耐性进行了鉴定,测定了株高、叶龄、黄叶数、地上部干物质量等形态指标及丙二醛(MDA)、可溶性糖和地上部磷含量等生理指标,计算了磷效率,并对各指标间相关性进行了分析.结果表明:221个株系的7个指标均显示出差异性,耐性株系在低磷胁迫下表现为相对叶龄、相对株高、相对地上部干物质量和相对可溶性糖含量较高,相对黄叶数和相对MDA含量较低,相对地上部磷含量差异不明显;磷效率与磷利用效率和磷吸收效率均呈正相关,其中磷利用效率与磷效率达到极显著水平(P<0.01),表明东乡野生稻回交重组自交系中耐性株系低磷耐性原因主要是具有高磷利用效率,即其单位吸磷量干物质合成力较高.  相似文献   

14.
The hepatitis B virus (HBV) is a major cause of human liver disease, including hepatocellular carcinoma (HCC). The prognosis for HCC is largely dependent on the clinicopathological characteristics regarding invasion and metastasis. Enhanced matrix metalloproteinase-9 (MMP-9) expression has been implicated as playing an important role in metastasis and invasion of HCC. However, the relationship between HBV infection and MMP-9 expression in HCC is currently poorly understood. We report here on a study of the levels of MMP-9 and MMP-2 expression in human fetal liver tissue, rat liver tissue, and Chang, HepG2, and Hep3B cells by gelatin zymography. Among these sources, Hep3B cells, which contain the integrated hepatitis B viral genome, continuously secrete the hepatitis B viral surface antigen, and express HBV genomic RNA, expressed high levels of proMMP-9, and a small amount of active MMP-9 was detected in Hep3B cells as assayed by zymography. We investigated the issue of whether HBV infection affects MMP-9 expression, which is known to play an important role in HCC invasion and metastasis. As a first step, human fetal hepatocyte (HFH) and HepG2 (HCC origin, HBV not detected) cells were subjected to infection with HBV, and the resulting infected cells successfully established are hereafter referred to as HFH-T2 and HepG2-HBV. The expression of MMP-9 was upregulated by the infected HBV in HFH-T2 and HepG2-HBV cells, as assayed by zymography, Northern blot, and Western blot analysis, and small amounts of active MMP-9 were detected in HFH-T2 and HepG2-HBV cells as assayed by zymography. The activation of the immature proMMP-9 to the mature MMP-9 could be induced by plasmin treatment. The activation of proMMP-9 was increased to a greater extent with plasmin treatment than without plasmin in HFH-T2 and HepG2-HBV cells but the addition of recombinant TIMP-1 inhibited the activation of proMMP-9. Finally, the addition of plasmin to the invasion assay using Matrigel resulted in an increase in invasiveness of HFH-T2 and HepG2-HBV cells, as well as MMP-9 activation, but the treatment with TIMP-1 inhibited the invasiveness of HFH-T2 and HepG2-HBV cells as well as MMP-9 activation. We conclude from these findings that HBV infection of hepatocytes and HepG2 cells affected the upregulation of MMP-9 expression and MMP-9 activation and, thus, increased the invasion potential by plasmin. To our knowledge, this is a first report showing that an HBV infection is linked to the upregulation of MMP-9 in HCC.  相似文献   

15.
16.
17.
ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) is localized in the nucleus, where it ADP-ribosylates specific target proteins. The post-translational modification (PTM) with a single ADP-ribose unit or with polymeric ADP-ribose (PAR) chains regulates protein function as well as protein–protein interactions and is implicated in many biological processes and diseases. SET7/9 (Setd7, KMT7) is a protein methyltransferase that catalyses lysine monomethylation of histones, but also methylates many non-histone target proteins such as p53 or DNMT1. Here, we identify ARTD1 as a new SET7/9 target protein that is methylated at K508 in vitro and in vivo. ARTD1 auto-modification inhibits its methylation by SET7/9, while auto-poly-ADP-ribosylation is not impaired by prior methylation of ARTD1. Moreover, ARTD1 methylation by SET7/9 enhances the synthesis of PAR upon oxidative stress in vivo. Furthermore, laser irradiation-induced PAR formation and ARTD1 recruitment to sites of DNA damage in a SET7/9-dependent manner. Together, these results reveal a novel mechanism for the regulation of cellular ARTD1 activity by SET7/9 to assure efficient PAR formation upon cellular stress.  相似文献   

18.
The lysosomal amino acid transporter SLC38A9 is referred to as transceptor, i.e. a transporter with a receptor function. The protein is responsible for coupling amino acid transport across the lysosomal membrane according to the substrate availability to mTORC1 signal transduction. This process allows cells to sense amino acid level responding to growth stimuli in physiological and pathological conditions triggering mTOR regulation. The main substrates underlying this function are glutamine and arginine. The functional and kinetic characterization of glutamine and arginine transport was performed using human SLC38A9 produced in E. coli, purified by affinity chromatography and reconstituted in liposomes. A cooperative behaviour for the wild type protein was revealed for both the substrates. A novel Na+ binding site, namely T453, was described by combined approaches of bioinformatics, site-directed mutagenesis and transport assay. Stimulation by cholesterol of glutamine and arginine transport was observed. The biological function of SLC38A9 relies on the interaction between its N-terminus and components of the mTOR complex; a deletion mutant of the N-terminus tail was produced and transport of glutamine was assayed revealing that this portion does not play any role in the intrinsic transport function of the human SLC38A9. Different features for glutamine and arginine transport were revealed: human SLC38A9 is competent for glutamine efflux, while that of arginine is negligible. In line with these results, imposed ?pH stimulated glutamine, not arginine transport. Arginine plays, on the contrary, a modulatory function and is able to stimulate glutamine efflux. Interestingly, reciprocal inhibition experiments also supported by bioinformatics, suggested that glutamine and arginine may bind to different sites in the human SLC38A9 transporter.  相似文献   

19.
The establishment of macromolecular complexes by scaffolding proteins is key to the local production of cAMP by anchored adenylyl cyclase (AC) and the subsequent cAMP signaling necessary for cardiac functions. We identify a novel AC scaffold, the Popeye domain‐containing (POPDC) protein. The POPDC family of proteins is important for cardiac pacemaking and conduction, due in part to their cAMP‐dependent binding and regulation of TREK‐1 potassium channels. We show that TREK‐1 binds the AC9:POPDC1 complex and copurifies in a POPDC1‐dependent manner with AC9 activity in heart. Although the AC9:POPDC1 interaction is cAMP‐independent, TREK‐1 association with AC9 and POPDC1 is reduced upon stimulation of the β‐adrenergic receptor (βAR). AC9 activity is required for βAR reduction of TREK‐1 complex formation with AC9:POPDC1 and in reversing POPDC1 enhancement of TREK‐1 currents. Finally, deletion of the gene‐encoding AC9 (Adcy9) gives rise to bradycardia at rest and stress‐induced heart rate variability, a milder phenotype than the loss of Popdc1 but similar to the loss of Kcnk2 (TREK‐1). Thus, POPDC1 represents a novel adaptor for AC9 interactions with TREK‐1 to regulate heart rate control.  相似文献   

20.
In this work a new spectrofluorimetric method for the determination of vitamin B1, based on the catalytic activity of horseradish peroxidase (HRP) in the presence of hydrogen peroxide (H2O2), has been developed. Non‐fluorescent vitamin B1 was easily converted through catalytic oxidation in alkaline medium into a fluorescent compound, even without exposure to light. The linear range for vitamin B1 observed was 0.026–16.83 µg/mL (RSD = 1.75%). The correlation coefficient for the calibration curve and limit of detection were found to be 0.9964 and 0.015 µg/mL, respectively. The developed method is practical, simple, sensitive and relatively free from interference by coexisting substances and has been successfully applied for the determination of vitamin B1 in pharmaceutical preparations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号