首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Aberrant methylation is one of the most frequent epigenetic alterations that can contribute to tumor formation. Cell-free DNA can originate from tumor tissue; therefore, the evaluation of methylation markers in cell-free DNA can be a promising method for cancer screening. Our aim was to develop a panel of biomarkers with altered methylation along the colorectal adenoma-carcinoma sequence in both colonic tissue and plasma. Methylation of selected CpG sites in healthy colonic (n = 15), adenoma (n = 15), and colorectal cancer (n = 15) tissues was analyzed by pyrosequencing. MethyLight PCR was applied to study the DNA methylation of SFRP1, SFRP2, SDC2, and PRIMA1 gene promoters in 121 plasma and 32 biopsy samples. The effect of altered promoter methylation on protein expression was examined by immunohistochemistry. Significantly higher (P < 0.05) DNA methylation levels were detected in the promoter regions of all 4 markers, both in CRC and adenoma tissues compared with healthy controls. Methylation of SFRP1, SFRP2, SDC2, and PRIMA1 promoter sequences was observed in 85.1%, 72.3%, 89.4%, and 80.9% of plasma samples from patients with CRC and 89.2%, 83.8%, 81.1% and 70.3% from adenoma patients, respectively. When applied as a panel, CRC patients could be distinguished from controls with 91.5% sensitivity and 97.3% specificity [area under the curve (AUC) = 0.978], while adenoma samples could be differentiated with 89.2% sensitivity and 86.5% specificity (AUC = 0.937). Immunohistochemical analysis indicated decreasing protein levels of all 4 markers along the colorectal adenoma-carcinoma sequence. Our findings suggest that this methylation biomarker panel allows non-invasive detection of colorectal adenoma and cancer from plasma samples.  相似文献   

2.
Background and ObjectivesColorectal cancer (CRC) is one of the most common malignant tumors worldwide with high incidence and mortality rate, while colorectal liver metastasis (CRLM) is one of the major causes of cancer-related deaths. Therefore, the present study aims to identify the hub gene associated with CRC carcinogenesis and liver metastasis, and then explore its diagnostic and prognostic value as well as the potential regulation mechanism.MethodsThe overlapping differential co-expression genes among CRC, CRLM, and normal tissues were explored on the GSE49355 and GSE81582 datasets from the Gene Expression Omnibus (GEO) database by integrated bioinformatics analysis. Then, the hub prognostic genes were selected from the overlapping genes by univariate Cox proportional hazard analysis and online database Gene Expression Profiling Interactive Analysis 2 (GEPIA2). Subsequently, the clinical value of the hub genes was evaluated in the TCGA and GSE39582 cohorts. Finally, the underlying mechanisms of the hub gene regulating CRC carcinogenesis and metastasis were explored by Gene function annotation and DNA methylation analysis.ResultsInositol mono-phosphatase 2 (IMPA2) was identified as the hub gene associated with CRC carcinogenesis and liver metastasis. IMPA2 had an excellent diagnostic efficiency, and its expression was significantly decreased in CRC and liver metastasis samples, being positively correlated with poor prognosis. Moreover, its low expression was associated with AJCC stage III+IV, T4, N1+2, and M1. In addition, our results revealed that the potential mechanisms used by IMPA2 to mediate CRC carcinogenesis and metastasis could be associated with lipid metabolism and epithelial mesenchymal transition (EMT). Finally, IMPA2 expression could be regulated by DNA methylation.ConclusionsIMPA2 was identified and reported for the first time as a hub gene biomarker in the diagnosis and prognosis of CRC, which could regulate CRC carcinogenesis and liver metastasis through the regulation of lipid metabolism, EMT, and DNA methylation.  相似文献   

3.
DNA methylation is a key mechanism of epigenetic regulation that is frequently altered in diseases such as cancer. To confirm the biological or clinical relevance of such changes, gene-specific DNA methylation changes need to be validated in multiple samples. We have developed the MethMarker software to help design robust and cost-efficient DNA methylation assays for six widely used methods. Furthermore, MethMarker implements a bioinformatic workflow for transforming disease-specific differentially methylated genomic regions into robust clinical biomarkers.  相似文献   

4.
5.
6.

Background

Both gastric and colorectal cancers (CRC) are the most frequently occurring malignancies worldwide with the overall survival of these patients remains unsatisfied. Identification of tumor suppressor genes (TSG) silenced by promoter CpG methylation uncovers mechanisms of tumorigenesis and identifies new epigenetic biomarkers for early cancer detection and prognosis assessment. Cystathionine-beta-synthase (CBS) functions in the folate metabolism pathway, which is intricately linked to methylation of genomic DNA. Dysregulation of DNA methylation contributes substantially to cancer development.

Methodology/Principal Findings

To identify potential TSGs silenced by aberrant promoter methylation in CRC, we analyzed tumor and adjacent tissues from CRC cases using the Illumina Human Methylation45 BeadChip. We identified hypermethylation of the CBS gene in CRC samples, compared to adjacent tissues. Methylation and decreased mRNA expression of CBS were detected in most CRC cell lines by methylation-specific PCR and semiquantitative RT-PCR, as well as in gastric cancer. Treatment with 5-aza-2''-deoxycytidine and/or trichostatin A reversed methylation and restored CBS mRNA expression indicating a direct effect. Aberrant methylation was further detected in 31% of primary CRCs (29 of 96) and 55% of gastric tumors (11 of 20). In contrast, methylation was seldom found in normal tissues adjacent to the tumor. CBS methylation was associated with KRAS mutations in primary CRCs (P = 0.04, by χ2-test). However, no association was found between CBS methylation or KRAS mutations with cancer relapse/metastasis in Stage II CRC patients.

Conclusion

A novel finding from this study is that the folate metabolism enzyme CBS mRNA levels are frequently downregulated through CpG methylation of the CBS gene in gastric cancer and CRC, suggesting that CBS functions as a tumor suppressor gene. These findings warrant further study of CBS as an epigenetic biomarker for molecular diagnosis of gastrointestinal cancers.  相似文献   

7.
Colorectal cancer (CRC) develops as a multi-step process which results from gradual accumulation of mutations in proto-oncogenes, tumor suppressor, and DNA repair genes. Mortality rate of CRC is very high. Therefore, development of alternative diagnostic methods which can be used in the early diagnosis is crucial. ATP2B4 gene encodes one of the four isoforms of p-type ATPase PMCA enzyme and bears critical importance in maintaining the balance of intracellular calcium homeostasis by providing the export of calcium ions out of the cell. ATP5B encodes a subunit of the mitochondrial ATP synthase which is an f-type ATPase. In this study, the relationship between ATP2B4 and ATP5B genes and CRC regarding gene expression was investigated. Study groups were constructed from a number of 50 patients (25 males, 25 females) with the mean age of 55.68 ± 9.4 and the gene expression levels in the healthy and cancerous tissues of the patients were compared by using semi-quantitative PCR and Real-Time PCR methods. As a result, in patients with rectum tumors, there was a significant relationship between ATP2B4 gene expression and the tumor location and in patients younger than 45 years, ATP5B gene expressions were detected significantly higher in tumor tissues by using RT-PCR. However, no significant relationship was detected in terms of expression differences of ATP2B4 and ATP5B genes between cancerous and healthy tissues of the CRC patients. ATP2B4 and ATP5B genes might have indirect associations in CRC pathogenesis and the investigation of their interactions with DNA repair and other related genes may help in understanding of CRC formation.  相似文献   

8.
9.
Epigenetic modifications are heritable variations in gene expression not encoded by the DNA sequence. According to reports, a large number of studies have been performed to characterize epigenetic modification during normal development and also in cancer. Epigenetics can be regarded more widely to contain all of the changes in expression of genes that make by adjusted interactions between the regulatory portions of DNA or messenger RNAs that lead to indirect variation in the DNA sequence. In the last decade, epigenetic modification importance in colorectal cancer (CRC) pathogenesis was demonstrated powerfully. Although developments in CRC therapy have been made in the last years, much work is required as it remains the second leading cause of cancer death. Nowadays, epigenetic programs and genetic change have pivotal roles in the CRC incidence as well as progression. While our knowledge about epigenetic mechanism in CRC is not comprehensive, selective histone modifications and resultant chromatin conformation together with DNA methylation most likely regulate CRC pathogenesis that involved genes expression. Undoubtedly, the advanced understanding of epigenetic-based gene expression regulation in the CRC is essential to make epigenetic drugs for CRC therapy. The major aim of this review is to deliver a summary of valuable results that represent evidence of principle for epigenetic-based therapeutic approaches employment in CRC with a focus on the advantages of epigenetic-based therapy in the inhibition of the CRC metastasis and proliferation.  相似文献   

10.
Recent studies suggest that paired box 5 (PAX5) is down‐regulated in multiple tumours through its promoter methylation. However, the role of PAX5 in non‐small cell lung cancer (NSCLC) pathogenesis remains unclear. The aim of this study is to examine PAX5 expression, its methylation status, biological functions and related molecular mechanism in NSCLC. We found that PAX5 was widely expressed in normal adult tissues but silenced or down‐regulated in 88% (7/8) of NSCLC cell lines. PAX5 expression level was significantly lower in NSCLC than that in adjacent non‐cancerous tissues (P = 0.0201). PAX5 down‐regulation was closely associated with its promoter hypermethylation status and PAX5 expression could be restored by demethylation treatment. Frequent PAX5 promoter methylation in primary tumours (70%) was correlated with lung tumour histological types (P = 0.006). Ectopic expression of PAX5 in silenced lung cancer cell lines (A549 and H1975) inhibited their colony formation and cell viability, arrested cell cycle at G2 phase and suppressed cell migration/invasion as well as tumorigenicity in nude mice. Restoration of PAX5 expression resulted in the down‐regulation of β‐catenin and up‐regulation of tissue inhibitors of metalloproteinase 2, GADD45G in lung tumour cells. In summary, PAX5 was found to be an epigenetically inactivated tumour suppressor that inhibits NSCLC cell proliferation and metastasis, through down‐regulating the β‐catenin pathway and up‐regulating GADD45G expression.  相似文献   

11.
Since genetic alteration only accounts for 20%–30% in the drug effect-related factors, the role of epigenetic regulation mechanisms in drug response is gradually being valued. However, how epigenetic changes and abnormal gene expression affect the chemotherapy response remains unclear. Therefore, we constructed a variety of mathematical models based on the integrated DNA methylation, gene expression, and anticancer drug response data of cancer cell lines from pan-cancer levels to identify genes whose DNA methylation is associated with drug response and then to assess the impact of epigenetic regulation of gene expression on the sensitivity of anticancer drugs. The innovation of the mathematical models lies in: Linear regression model is followed by logistic regression model, which greatly shortens the calculation time and ensures the reliability of results by considering the covariates. Second, reconstruction of prediction models based on multiple dataset partition methods not only evaluates the model stability but also optimizes the drug-gene pairs. For 368,520 drug-gene pairs with P < 0.05 in linear models, 999 candidate pairs with both AUC ≥ 0.8 and P < 0.05 were obtained by logistic regression models between drug response and DNA methylation. Then 931 drug-gene pairs with 45 drugs and 491 genes were optimized by model stability assessment. Integrating both DNA methylation and gene expression markedly increased predictive power for 732 drug-gene pairs where 598 drug-gene pairs including 44 drugs and 359 genes were prioritized. Several drug target genes were enriched in the modules of the drug-gene-weighted interaction network. Besides, for cancer driver genes such as EGFR, MET, and TET2, synergistic effects of DNA methylation and gene expression can predict certain anticancer drugs’ responses. In summary, we identified potential drug sensitivity-related markers from pan-cancer levels and concluded that synergistic regulation of DNA methylation and gene expression affect anticancer drug response.  相似文献   

12.
We hypothesize that 14-3-3 sigma gene expression and its regulation by methylation can characterize histological types of primary human epithelial ovarian cancer. To test this hypothesis, ovarian cancer cell lines and 54 ovarian cancer tissue samples were analyzed for expression and methylation of 14-3-3 sigma gene using methylation specific PCR. The results of our experiments demonstrate that 14-3-3 sigma gene was methylated and inactivated in ES-2 ovarian cell line, which was derived from clear cell adenocarcinoma. Treatment of this cell line with demethylating agent 5-aza-2'-deoxycytidine restored the expression of 14-3-3 sigma gene. In human ovarian cancer tissues, the expression of 14-3-3 sigma protein was inactivated in most of the ovarian clear cell carcinoma tissues. Interestingly, 14-3-3 sigma protein expression was positive in significantly higher percentages of serous (89.5%), endometrioid (90%), and mucinous (81.8%) ovarian adenocarcinoma tissues. The ovarian clear cell carcinoma samples with inactivated 14-3-3 sigma protein were highly methylated, suggesting that inactivation of 14-3-3 sigma gene is through DNA methylation. Using direct DNA sequencing, 14-3-3 sigma gene methylation on all the 17 CpG sites was significantly higher in ovarian clear cell carcinoma as compared to other histological types of ovarian cancer (serous, endometrioid, and mucinous). This is the first report suggesting that 14-3-3 sigma gene expression and methylation status can characterize histological features of different types of ovarian cancer.  相似文献   

13.
《Epigenetics》2013,8(4):503-512
The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject’s colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands—in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)—were significantly hypermethylated in tumor vs. normal tissues (P < 0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network—the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated genes, as well as hypomethylated LINE-1 sequences, which may serve as potential biomarkers for CRC in African Americans. Our discovered biomarkers were intimately linked to the insulin/TGF-B1 pathway, further strengthening the association of diabetic disorders with colon oncogenic transformation.  相似文献   

14.

Background

Bone marrow stromal antigen 2 (BST-2) is a known anti-viral gene that has been recently identified to be overexpressed in many cancers, including breast cancer. BST-2 is critical for the invasiveness of breast cancer cells and the formation of metastasis in vivo. Although the regulation of BST-2 in immune cells is unraveling, it is unknown how BST-2 expression is regulated in breast cancer. We hypothesized that meta-analyses of BST-2 gene expression and BST-2 DNA methylation profiles would illuminate mechanisms regulating elevated BST-2 expression in breast tumor tissues and cells.

Materials and Methods

We performed comprehensive meta-analyses of BST-2 gene expression and BST-2 DNA methylation in The Cancer Genome Atlas (TCGA) and various Gene Expression Omnibus (GEO) datasets. BST-2 expression levels and BST-2 DNA methylation status at specific CpG sites on the BST-2 gene were compared for various breast tumor molecular subtypes and breast cancer cell lines.

Results

We show that BST-2 gene expression is inversely associated with the methylation status at specific CpG sites in primary breast cancer specimens and breast cancer cell lines. BST-2 demethylation is significantly more prevalent in primary tumors and cancer cells than in normal breast tissues or normal mammary epithelial cells. Demethylation of the BST-2 gene significantly correlates with its mRNA expression. These studies provide the initial evidence that significant differences exist in BST-2 DNA methylation patterns between breast tumors and normal breast tissues, and that BST-2 expression patterns in tumors and cancer cells correlate with hypomethylated BST-2 DNA.

Conclusion

Our study suggests that the DNA methylation pattern and expression of BST-2 may play a role in disease pathogenesis and could serve as a biomarker for the diagnosis of breast cancer.  相似文献   

15.
Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2’ deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory.  相似文献   

16.

Purpose

Caspase 8 (CASP8) plays a critical role in the apoptotic pathway and aberrant regulation of this pathway causes many diseases including cancers. Genetic variants rs3834129 (CTTACT/−) and rs3769821 (T/C) in the promoter region of the CASP8 gene were documented to be associated with multiple solid cancers and non-Hodgkin’s lymphoma (NHL), respectively, despite of some controversies. We aimed to discern potential association of these two variants and rs113686495 (CTGTCATT/−), as well as CASP8 mRNA and protein expression levels with colorectal cancer (CRC) in Han Chinese.

Methods

We genotyped CASP8 genetic variants in 305 CRC patients and 342 healthy individuals from Kunming, Southwest China. Expression levels of CASP8 mRNA and protein were quantified in paired cancerous and paracancerous normal tissues by using real-time quantitative PCR and western blot, respectively. We compared the frequencies of alleles, genotypes, and haplotypes between the cases and controls. Correlation of CASP8 mRNA and protein expression levels in paired cancerous and paracancerous normal tissues from patients with different genotypes and clinical expression were also evaluated.

Results

There was no association of the CASP8 genetic variants with CRC in our case-control study. The CASP8 gene mRNA expression levels in cancerous and paracancerous normal tissues were similar and there was no significant difference between subjects with different genotypes and clinical features. However, we found that CASP8 protein level was significantly lower in cancerous tissues than in paired paracancerous normal tissues.

Conclusions

Our results suggest that the three CASP8 genetic variants may not be associated with CRC risk in Han Chinese from southwest China. Aberrant CASP8 protein expression may play a role in the pathogenesis of CRC.  相似文献   

17.
18.
Low gene expression of folylpolyglutamate synthase (FPGS) in colorectal mucosa correlates with low folate levels and poor survival of colorectal cancer (CRC) patients. Because gene-specific hypermethylation is affected by the folate level, the hypermethylation status in mucosa may also be linked to clinical outcome of CRC patients. The tumor suppressor gene p16INK4a (p16) regulates the cell cycle and angiogenic switch. In human neoplastic tissues, the main mechanism of p16 inactivation is promoter methylation. The aim of the study was to determine whether hypermethylation of the p16 promoter could be detected in mucosa of CRC patients (n = 181) and to analyze if hypermethylation was related to survival. The relation between p16 hypermethylation and expression of FPGS and two other folate-associated genes, reduced folate carrier 1 (RFC-1), and thymidylate synthase (TS), was analyzed (n = 63). The results showed that p16 was hypermethylated in 65 (36%) of the mucosa samples and that hypermethylation was age-related (P = 0.029). After adjustment for known risk factors, Cox regression analysis showed that Dukes' A-C patients with p16 hypermethylation in mucosa had an increased risk of cancer-related death (hazard ratio = 2.9, P = 0.007) and shorter disease-free survival (hazard ratio = 2.5, P = 0.015) compared with patients with no p16 hypermethylation. RFC-1 and FPGS gene expression levels were significantly correlated in patients lacking p16 hypermethylation in mucosa (P = 0.0003), but not at all correlated in patients having hypermethylation in mucosa (P = 1.0). In conclusion, p16 hypermethylation in mucosa of CRC patients was identified as an independent prognostic parameter for cancer-specific survival as well as an independent predictor of DFS. The results suggest that there might be a connection between folate-associated gene expression and p16 methylation status.  相似文献   

19.
Changes in the methylation levels of DNA from white blood cells (WBCs) are putatively associated with an elevated risk for several cancers. The aim of this study was to investigate the association between colorectal cancer (CRC) and the methylation status of three DNA repetitive elements in DNA from peripheral blood. WBC DNA from 539 CRC cases diagnosed before 60 years of age and 242 sex and age frequency-matched healthy controls from the Australasian Colorectal Cancer Family Registry were assessed for methylation across DNA repetitive elements Alu, LINE-1 and Sat2 using MethyLight. The percentage of methylated reference (PMR) of cases and controls was calculated for each marker. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression adjusted for potential confounders. CRC cases demonstrated a significantly higher median PMR for LINE-1 (p < 0.001), Sat2 (p < 0.001) and Alu repeats (p = 0.02) when compared with controls. For each of the DNA repetitive elements, individuals with PMR values in the highest quartile were significantly more likely to have CRC compared with those in the lowest quartile (LINE-1 OR = 2.34, 95%CI = 1.48–3.70; p < 0.001, Alu OR = 1.83, 95%CI = 1.17–2.86; p = 0.01, Sat2 OR = 1.72, 95%CI = 1.10–2.71; p = 0.02). When comparing the OR for the PMR of each marker across subgroups of CRC, only the Alu marker showed a significant difference in the 5-fluoruracil treated and nodal involvement subgroups (both p = 0.002). This association between increasing methylation levels of three DNA repetitive elements in WBC DNA and early-onset CRC is novel and may represent a potential epigenetic biomarker for early CRC detection.  相似文献   

20.
Aberrant DNA methylation patterns have been reported in inflamed tissues and may play a role in disease. We studied DNA methylation and gene expression profiles of purified intestinal epithelial cells from ulcerative colitis patients, comparing inflamed and non-inflamed areas of the colon. We identified 577 differentially methylated sites (false discovery rate <0.2) mapping to 210 genes. From gene expression data from the same epithelial cells, we identified 62 differentially expressed genes with increased expression in the presence of inflammation at prostate cancer susceptibility genes PRAC1 and PRAC2. Four genes showed inverse correlation between methylation and gene expression; ROR1, GXYLT2, FOXA2, and, notably, RARB, a gene previously identified as a tumor suppressor in colorectal adenocarcinoma as well as breast, lung and prostate cancer. We highlight targeted and specific patterns of DNA methylation and gene expression in epithelial cells from inflamed colon, while challenging the importance of epithelial cells in the pathogenesis of chronic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号