首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The integration frequency of phage att80 immlambdac1857 into the chromosome of a mutant strain H47 Escherichia coli K-12 deleted for the normal prophage insertion site is found to be about 20-fold decreased as compared with its integration into the wild type strain. The most of the resulting lysogens contain the prophage at the secondary attachment site of the mutant bacterial chromosome which is preferentially utilized for prophage insertion. This attachment site (att80-II) is located close to his-genes on the chromosome of H47 strain. Prophage curing procedure of such abnormal lysogens results in the appearance of rare auxotrophic heat-resistant survivors with the His- phenotype. In some cases the prophage insertion can induce an inversion of a neighbouring genetic region. Such lysogens contain the purC gene near prophage located at the att80-II site, and after curing they segregate the heat-resistant His- and Pur- colonies.  相似文献   

3.
The pheA gene encoding the bifunctional P-protein (chorismate mutase:prephenate dehydratase) was cloned from Pseudomonas stutzeri and sequenced. This is the first gene of phenylalanine biosynthesis to be cloned and sequenced from Pseudomonas. The pheA gene was expressed in Escherichia coli, allowing complementation of an E. coli pheA auxotroph. The enzymic and physical properties of the P-protein from a recombinant E. coli auxotroph expressing the pheA gene were identical to those of the native enzyme from P. stutzeri. The nucleotide sequence of the P. stutzeri pheA gene was 1095 base pairs in length, predicting a 365-residue protein product with an Mr of 40,844. Codon usage in the P. stutzeri pheA gene was similar to that of Pseudomonas aeruginosa but unusual in that cytosine and guanine were used at nearly equal frequencies in the third codon position. The deduced P-protein product showed sequence homology with peptide sequences of the E. coli P-protein, the N-terminal portion of the E. coli T-protein (chorismate mutase:prephenate dehydrogenase), and the monofunctional prephenate dehydratases of Bacillus subtilis and Corynebacterium glutamicum. A narrow range of values (26-35%) for amino acid matches revealed by pairwise alignments of monofunctional and bifunctional proteins possessing activity for prephenate dehydratase suggests that extensive divergence has occurred between even the nearest phylogenetic lineages.  相似文献   

4.
The family of lambdoid phages displays a varying specificity of integration into the host chromosome. The lambda phage DNA failed to get inserted at the secondary attachment site(s) of the gal operon (frequency less than 2.6 X 10(-8)) in the presence of the primary (normal) one. By contrast, phi 80 and the lambda att80 hybrid integrated into wild-type Escherichia coli at least, at two secondary att sites of the btuB locus, the latter phage being also capable of integration in the vicinity of purE and purC (frequency 2 X 10(-3) to 10(-4)). Integration of phi 80 and lambda att80 into btuB occurred with about the same frequency as in cells deleted for normal insertion site (0.7 divided by 4.0 X 10(-6)). An analysis of the secondary lysogens with the prophage in btuB showed them to be polylysogens; the additional prophage(s) was found in the primary att site. We also failed to observe integration of phi 80 and lambda att80 with formation of secondary monolysogens into other foci (frequency less than 0.0035, if multiplicity of infection was 10(-3) or 10). It is presumed that phi 80 and lambda att80 prophages get only integrated at secondary att sites in case the primary site is occupied.  相似文献   

5.
The deletions in tandem prophage lambda appear with high frequency (to 10%) in rec A- strain of Escherichia coli. The deletions were shown by marker rescue and hybridization of fragments of DNA on nitrocellulose filters with nick-translated phage lambda DNA localized only in prophage area. Right and left att sites are not involved. The majority of defective lysogens had all regulatory regions and deletions of late structural genes. These strains may be used for construction of the host-vector systems with the strongest promoter p'R of phage lambda.  相似文献   

6.
Integrative recombination between specific attachment (att) regions of the bacteriophage lambda genome (attP) and the Escherichia coli genome (attB) results in a prophage flanked by the hybrid recombinant sites attL and attR. Each att site contains sequences to which proteins involved in recombination bind. Using site-directed mutagenesis, we have constructed a related set of point mutations within each of the five Int "arm-type" binding sites located within attP, attL and attR. Footprint analyses of binding demonstrate that mutating the arm-type sites significantly disrupts the binding of Int. Recombination analyses of mutant att sites in vivo and in vitro demonstrate that only three wild-type arm-type sites within attP are required for efficient integrative recombination. Similar analyses demonstrate that efficient excision can occur with two other different sets of wild-type arm-type sites in attL and attR. These results demonstrate that integrative and excisive recombination may involve interactions of Int with distinct and different subsets of arm-type sites.  相似文献   

7.
We studied the ability of lambda, phi 80 and their hybrid lambda att80 to lysogenize homoimmune monolysogens and examined the prophage locations on the chromosome of the resulting polylysogens. We observed an effective integration of phi 80 and lambda att80, in contrast to lambda, into the host chromosome, exclusively, at the attachment sites that were not occupied by the resident prophage (nontandem). Besides, the lambda att80 (int+) prophage was observed to ensure effective nontandem integration of a homoimmune int mutant DNA. Hence, we inferred that the expression of the int gene in the phi 80 prophage is constitutive, cI-independent and results in nontandem integration of the homoimmune prophage. The validity of this inference has been supported experimentally: (i) the only lysogen that was found to contain a phi 80 tandem was highly unstable (spontaneous segregation of monolysogens occurred 6-7 times more frequently than with the lambda tandem); (ii) an int inactivating mutation stabilized the phi 80 tandem; as a result, the int mutant has the frequency of tandem integration as high as that of lambda, while no nontandem integration was observed. A hypothesis is proposed which accounts for the instability of the phi 80 tandems and explains the relation between this phenomenon and the prophage ability to integrate into secondary attachment sites in the presence of the primary (normal) one.  相似文献   

8.
The pheA gene of Corynebacterium glutamicum encoding prephenate dehydratase was isolated from a gene bank constructed in C. glutamicum. The specific activity of prephenate dehydratase was increased six-fold in strains harboring the cloned gene. Genetic and structural evidence is presented which indicates that prephenate dehydratase and chorismate mutase were catalyzed by separate enzymes in this species. The C. glutamicum pheA gene, subcloned in both orientations with respect to the Escherichia coli vector pUC8, was able to complement an E. coli pheA auxotroph. The nucleotide sequence of the C. glutamicum pheA gene predicts a 315-residue protein product with a molecular weight of 33,740. The deduced protein product demonstrated sequence homology to the C-terminal two-thirds of the bifunctional E. coli enzyme chorismate mutase-P-prephenate dehydratase.  相似文献   

9.
The Escherichia coli dnaZ gene, a deoxyribonucleic acid (DNA) polymerization gene, is located 1.2 min counterclockwise from purE, at approximately min 10.5 on the E. coli map. From a lysogen with lamdacI857 integrated at a secondary attachment site near purE, transducing phages (lambdadnaS+) that transduced a dnaZts (lambda+) recipient to temperature insensitivity (TS+) were discovered. Three different plaque-forming transducing phages were isolated from seven primary heterogenotes. Genetic tests and heteroduplex mapping were used to determine the length and position of E. coli DNA within the lambda DNA. Complementation tests demonstrated that the deletions in all three strains removed both att P and the int gene, i,e., DNA from both prophage ends. Heteroduplex mapping confirmed this result by demonstrating that all three strains had deletions of lambda DNA that covered the b2 to red region, thereby removing both prophage ends. Specifically, the deletions removed lambda DNA between the points 39.3 to 66.5% of lambda length (measured in percent length from the left and of lambda phage DNA) in all three strains. The three strains are distinct, however, because they had differing lengths of host DNA insertions. These phages must have been formed by an anomalous procedure, because standard lambda transducing phages are deleted for one prophage end only. In lambdagal and lambdabio strains, the deletions of lambda DNA begin at the union of prophage ends (i.e., position 57.3% of lambda length) and extend leftward or rightward, respectively (Davidson and Szybalski, in A, D. Hershey [ed.], The Bacteriophage Lambda, p. 45-82, 1971). Models for formation of the lambdadnaZ+ phages are discussed.  相似文献   

10.
The frequency of polylysogeny and the genetic structure of polylysogens were studied for phages lambda, phi 80 and lambda att80. For none of these phages does frequency of polylysogeny vary by more than a factor of 2 within a wide range of multiplicities of infection (from 10(-3) up to 10) but the relative location of the prophages on the host chromosome is different. In the case of lambda, polylysogens are formed with a high frequency (0.20-0.41) and the prophages are inserted in tandem into the primary (normal) att site. In the case of phi 80 and lambda att80, polylysogens occur about 10 times less frequently and usually have one prophage inserted into the primary attachment site and another (sometimes, also a third) in one of the secondary ones. Wild-type Escherichia coli was shown to possess at least four secondary att80 sites, two of which (close to the his and tolC loci) are preferred. The frequency of secondary integration of phi 80 and lambda att80 does not differ significantly in the wild-type host and in cells deleted for the primary att site (0.041 and 0.045, respectively, among surviving cells at MOI 10). Certain properties of the phi 80 lysogens make it more difficult to decode their genetic structure.  相似文献   

11.
Analysis of DNA extracted from Bacillus subtilis lysogenic for bacteriophage phi 105 was performed by restriction endonuclease digestion and Southern hybridization using mature phi 105 DNA as a probe. The data revealed that the phi 105 prophage is circularly permuted. Digests using the enzymes EcoRI, SmaI, PstI, and HindIII localized the bacteriophage attachment site (att) to a region 63.4 to 65.7% from the left end of the mature bacteriophage genome. The phi 105 att site-containing SmaI C, PstI J, and HindIII L fragments were not present in digests of phi 105 prophage DNA. phi 105-homologous "junction" fragments were visualized by probing digests of prophage DNA with the purified PstI J fragment isolated from the mature bacteriophage genome. The excision of the phi 105 prophage was detected by observing the appearance of the mature PstI J fragment and the concomitant disappearance of a junction fragment during the course of prophage induction.  相似文献   

12.
An Escherichia coli gene bank composed of large DNA fragments (about 40 kilobases) was constructed by using the small cosmid pHC79. From it, a clone was isolated for its ability to overproduce superoxide dismutase. The enzyme overproduced was manganese superoxide dismutase, as determined by electrophoresis and antibody precipitation. Maxicell analysis and two-dimensional O'Farrell polyacrylamide gel electrophoresis demonstrated that the structural gene, sodA, of manganese superoxide dismutase was cloned. Subcloning fragments from the original cosmid located the sodA gene within a 4.8-kilobase EcoRI-BamHI fragment. This fragment was inserted into a lambda phage which was deleted for the att region and consequently could only lysogenize by recombination between the cloned bacterial DNA insertion and the bacterial chromosome. Genetic mapping of the prophage in such lysogens indicated that the chromosomal sodA locus lies near 87 min on the E. coli map.  相似文献   

13.
T S Il'ina  E V Nechaeva 《Genetika》1977,13(12):2181-2188
The mutant strain KS713 of Escherichia coli K-12 deleted for the normal insertion site and secondary preferable one was obtained. The insertion frequency of phage phi80 into the double deletion strain is reduced about 30-fold with respect to integration into the strain H47 with deletion of the primary phi80 attachment site and about 500-fold relative to integration into wild type Escherichia coli. Analysis of the rare abnormal lysogens of KS 713 strain indicates that there are secondary sites on the chromosome, which are utilized for prophage attachment if insertion at preferable secondary att80-II site is eliminated too. The insertion of phi80 phage into the bfe locus was obtained by the appropriate selection technique. Induced prophage excision from the bfe site was rather efficient and lysates contained phi80 phage particles that could specificically transduce the argH+ gene. Upon transduction into a recipient strain carrying recA, heterogenotes harbouring both the wild-type and the mutant argH genes were isolated. These heterogenotes were used for producing high-frequency transducing lysates.  相似文献   

14.
The nucleotide sequence of the leftmost 2,363 base pairs of the HP1 genome, which includes the attachment site (attP) and the integration region, was determined. This sequence contained an open reading frame encoding a 337-residue polypeptide, which is a member of the integrase family of site-specific recombination proteins as judged by sequence comparison. The open reading frame was located immediately adjacent to the att site and was oriented so that initiation of translation would begin distal to the att site and end in its immediate vicinity. Expression of this DNA segment in Escherichia coli provided extracts which promoted site-specific recombination between plasmids containing cloned HP1 attP and Haemophilus influenzae attB sites. This recombination was directional, since no reaction was observed between plasmids containing attR and attL sites. The reaction was stimulated by the accessory protein integration host factor of E. coli. Evidence was also obtained that the integration host factor influenced the levels of HP1 integrase expression. The deduced amino acid sequence of HP1 integrase has remarkable similarity to that deduced for the integrase of coliphage 186.  相似文献   

15.
The argU (dnaY) gene of Escherichia coli is located, in clockwise orientation, at 577.5 kilobases (kb) on the chromosome physical map. There was a cryptic prophage spanning the 2 kb immediately downstream of argU that consisted of sequences similar to the phage P22 int gene, a portion of the P22 xis gene, and portions of the exo, P, and ren genes of bacteriophage lambda. This cryptic prophage was designated DLP12, for defective lambdoid prophage at 12 min. Immediately clockwise of DLP12 was the IS3 alpha 4 beta 4 insertion element. The argU and DLP12 int genes overlapped at their 3' ends, and argU contained sequence homologous to a portion of the phage P22 attP site. Additional homologies to lambdoid phages were found in the 25 kb clockwise of argU. These included the cryptic prophage qsr' (P. J. Highton, Y. Chang, W. R. Marcotte, Jr., and C. A. Schnaitman, J. Bacteriol. 162:256-262, 1985), a sequence homologous to a portion of lambda orf-194, and an attR homolog. Inasmuch as the DLP12 att int xis exo P/ren region, the qsr' region, and homologs of orf-194 and attR were arranged in the same order and orientation as the lambdoid prophage counterparts, we propose that the designation DLP12 be applied to all these sequences. This organization of the DLP12 sequences and the presence of the argU/DLP12 int pair in several E. coli strains and closely related species suggest that DLP12 might be an ancestral lambdoid prophage. Moreover, the presence of similar sequences at the junctions of DLP12 segments and their phage counterparts suggests that a common mechanism could have transferred these DLP12 segments to more recent phages.  相似文献   

16.
Among mutants of Escherichia coli resistant to p-fluorophenylalanine (PFP) were some with constitutive expression of the phenylalanine biosynthetic operon (the pheA operon). This operon is repressed in the wild type by phenylalanine. The mutation in three of these mutants mapped in the aroH-aroD region of the E. coli chromosome at 37 min. A plasmid bearing wild-type DNA from this region restored p-fluorophenylalanine sensitivity and wild-type repression of the pheA operon. Analysis of subclones of this plasmid and comparison of its restriction map with published maps indicated that the mutations affecting regulation of the pheA operon lie in the structural genes for phenylalanyl-tRNA synthetase, pheST, probably in pheS. Thus, the pheST operon has a role in the regulation of phenylalanine biosynthesis, the most likely being that wild-type phenylalanyl-tRNA synthetase maintains a sufficient intracellular concentration of Phe-tRNA(Phe) for attenuation of the pheA operon in the presence of phenylalanine. A revised gene order for the 37-min region of the chromosome is reported. Read clockwise, the order is aroD, aroH, pheT, and pheS.  相似文献   

17.
Phage 16-3 is a temperate phage of Rhizobium meliloti 41 which integrates its genome with high efficiency into the host chromosome by site-specific recombination through DNA sequences of attB and attP. Here we report the identification of two phage-encoded genes required for recombinations at these sites: int (phage integration) and xis (prophage excision). We concluded that Int protein of phage 16-3 belongs to the integrase family of tyrosine recombinases. Despite similarities to the cognate systems of the lambdoid phages, the 16-3 int xis att system is not active in Escherichia coli, probably due to requirements for host factors that differ in Rhizobium meliloti and E. coli. The application of the 16-3 site-specific recombination system in biotechnology is discussed.  相似文献   

18.
19.
A hybrid lambda att 80 phage with the genetic structure lambda (A-J) phi 80 (att-int-xis) imm lambda..cI857s7 is shown to be a convenient vector for creating transducing phages. On the one hand, the restriction analysis indicates that it has 3 restriction sites for EcoRI in comparison with 5 and 9 sites for parental phages lambda and phi 80 respectively. On the other hand, its buoyant density is less than that of phage lambda and under centrifugation it is easier separated from the phage transducing particles. When lambda att 80 prophage was excluded from the bfe locus of Escherichia coli, transducing phages with genes of two RNA polymerase beta-subunits (rpoB and rpoC) were isolated. To identify the latter, a convenient genetic test was worked out. A physical map of lambda att 80 drifd 35 transducing phage, carrying rpoB and rpoC genes has been constructed using endonucleases EcoRI and HindIII. A comparison of this map and the corresponding maps of transducing phages lambda drifd 18 and lambda drifd 47, studied earlier, led to the discovery of two integration sites of phage lambda within the locus bfe spaced apart by about 1800 nucleotide pairs. At all the sites both phages (lambda and lambda att 80) have integrated in the locus bfe in the counter clockwise order.  相似文献   

20.
In an Hfr(186) X F- cross, the 186 prophage on the incoming male chromosome is not induced, despite the fact that prophage 186 can be induced by other means (W. H. Woods and J.B. Egan, J Virol. 14:1349-1356, 1974). We show here that the conjugating female is temporarily inhibitory to infection by 186, and this delay, we postulate, enables cI repression to be reestablished before the female cell recovers its 186 sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号