首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capability of REF cells transformed by EA + E1B-19 kDa and EA + cHa-ras oncogenes to realize the G1/S cell cycle arrest upon serum starvation was studied. The amount of cyclin-kinase inhibitor protein p27/Kip was shown to increase in both normal and transformed cells. However, the p27/Kip-bound cyclin-kinase complexes of transformed cells were found to be active, implying the functional inactivation of p27/Kip inhibitor. Nevertheless, in contrast to E1A + cHa-ras transformants, E1A + E1B-19 kDa transformants undergo the G1 cell cycle arrest. The G1 cell cycle block correlates with the decrease in cyclinE-Cdk2 activity. Since cyclinE-Cdk2 complexes need Thr-160 phosphorylation of Cdk2 by CAK-kinase for full activity, we have analysed the Cdk-7 associated activity upon serum starvation using gst-Cdk2 as a substrate. Serum starvation did not affect CAK activity either in E1A + cHa-ras or in E1A + E1B-19 kDa transformants. Thus, selective suppression of cyclineE-Cdk2 activity in E1A + E1B-19 kDa transformants upon serum starvation does not arise from the action of cyclin-kinase inhibitors, or from change in CAK activity.  相似文献   

2.
3.
Introduction of the E1A early region of the human adenovirus type 5 impairs the ability of mammalian cells to arrest the cell cycle at G1/S after damage. Two-parameter fluorescent-activated cell sorting (FACS) with iododeoxyuridine revealed the radiation-induced G1/S arrest in rat embryo fibroblasts transformed with the complementing E1A + E1B-19 kDa oncogenes. This was due to selective inhibition of CycIE/Cdk2-associated kinase activity, while activities of type 2 kinase and of CyclA/Cdk2 complexes remained unchanged. The inhibitor of G1-phase cyclin kinases, p21/Waf1, was accumulated and interacted with target kinases both in normal and in transformed cells after irradiation. As shown by immunoprecipitation, p21/Waf1 formed complexes with the E1A on coproducts in the transformants, which possibly accounted for its functional inactivation. Kinase modification in cyclin-kinase complexes was assumed to play a key role in regulation of cyclin-dependent kinases in the transformants with inactivated p21/Waf1.  相似文献   

4.
Introduction of the E1A early region of the human adenovirus type 5 impairs the ability of mammalian cells to stop in the cell cycle at G1/S after damage. Two-parameter fluorescence cell sorting with iododeoxyuridine revealed the radiation-induced G1/S arrest in rat embryo fibroblasts transformed with the complementing E1A and E1B-19kDa oncogenes. This was due to selective inhibition of CyclE/Cdk2-associated kinase activity, while activities of type 2 kinase and of CyclA/Cdk2 complexes remained unchanged. The inhibitor of G1-phase cyclin kinases, p21/Waf1, was accumulated and interacted with target kinases both in normal and in transformed cells after irradiation. As shown by immunoprecipitation, p21/Waf1 formed complexes with the E1A oncoproducts in the transformants, which possibly accounted for its functional inactivation. Kinase modification in cyclin–kinase complexes was assumed to play a key role in regulation of cyclin-dependent kinases in the transformants with inactivated p21/Waf1.  相似文献   

5.
Rat embryonic fibroblasts, transformed with E1A and cHa-ras oncogenes, are unable to stop in the cell cycle checkpoints under growth factor withdrawal and genotoxic stresses (Bulavin et al., 1999). In the present paper, we showed that sodium butyrate, an inhibitor of histone deacetyase activity, decreased the share of cells being in S-phase, and caused G1/S and G2/M blocks of the cell cycle in the transformants. By means of RT-PCR and immunoblotting, we found that NaB significantly changed the expression of genes involved in proliferation: cyclins D1, A, E and cyclin-dependent kinases Cdk2 and Cdk4, whereas the amount of p21Waf1 and p27Kip1 inhibitors greatly increased. Along with accumulation of p21Waf1 protein content, that of Cdk2-bound p21 increases. Taken together, these data allow to suggest that NaB treatment does evidently restore the capability of p21Waf1 to inhibit cyclin-kinase activity. One may suppose that inhibition of HDAC activity by sodium butyrate leads to activation of yet unknown HDAC-dependent genes, which is followed by restoration of p21Waf1 function in spite of the E1A oncogene expression.  相似文献   

6.
We studied the capability of E1A + cHa-ras and E1A + E1B19kDa transformants to undergo the G1/S arrest of the cell cycle following depletion of serum growth factors. It has been shown that serum starvation induced the G1/S arrest both in normal rat embryo fibroblasts (REF) and in E1A + E1B19kDa transformants, whereas E1A + cHa-ras transformed cells lost this feature. To analyse the mechanisms underlying these differences, we studied the expression of p27/KIP, its intracellular distribution and association with E1A oncoproducts. The content of the p27/KIP inhibitor of cyclin-dependent kinases was found to change a little upon transformation by two complementary oncogene pairs. However, serum starvation for 24 h led to a significant increase in the content of p27/KIP in E1A + E1B19kDa transformants, while E1A + cHa-ras cells accumulated p27/KIP less markedly. According to the immunofluorescence study, the p27/KIP inhibitor is located in the nucleus of both normal and transformed cells. Moreover, serum starvation did not lead to its inhibition due to redistribution to the cytoplasm in both cell lines. Also, we were unable to detect association of p27/KIP with E1A oncoproducts in immunoprecipitated complexes. The obtained data indicate that, in contrast to E1A + cHa-ras transformants, in E1A + E1B19kDa cells the p27/KIP inhibitor is functional and it is capable of inducing the G1/S block after serum starvation.  相似文献   

7.
We have studied the ability of ERK1,2, JNK1,2 and p38 kinases to be regulated after serum deprivation in E1A + E1B-19 kDa- and E1A + E1A + c-Ha-ras-transformed rat embryo fibroblasts. It was demonstrated that oncogene transformation resulted in an increase of total kinase content independently of the type of complementing oncogene. However, for ERK1,2 kinases phosphorylation was found to depend on the type of complementing oncogene. Besides, unusual biphasic character for ERK1,2 kinases phosphorylation was checked in control fibroblasts REF52 and in transformed E1A + E1B-19 kDa cells, which undergo G1/S arrest after a 24 h serum starvation. According to the immunoblotting data, phosphorylated forms of ERK1,2 kinases are not detected after 15-30 min of serum deprivation, but their content is restored up to the control level within several hours. At the same time, the level of ERK1,2 phosphorylation in E1A + c-Ha-ras cells did not change after serum withdrawal. Besides, serum deprivation did not lead to significant changes in the level of phosphorylation of both type stress kinases--JNK2 and p38 in all types of studied cells. We discuss possible mechanisms of biphasic alteration in ERK1,2 phosphorylation level under condition of serum deprivation of REF52 cells and E1A + E1B-19 kDa-transformed fibroblasts, able to be arrested in G1 phase.  相似文献   

8.
Here we show that introduction of human bcl-2 gene into E1A+c-Ha-ras-transformed rat embryo fibroblasts, which are highly susceptible to proapoptotic stimuli and fail to be arrested at the G1/S boundary following genotoxic stresses, results not only in inhibition of apoptosis, but also in restoration of the G1/S arrest. Overexpression of Bcl-2 did not affect proliferation rate and saturation density of E1A+c-Ha-ras transformants. Genotoxic stresses caused prolong G1/S arrest in Bcl-2-overexpressing transformants. Remarkably, levels and activities of Cdk2, cyclins E/A, cyclin E-Cdk2 and cyclin A-Cdk2 were unchanged during G1/S arrest. Introduction of Bcl-2 into E1A+c-Ha-ras-transformants resulted in accumulation of p21/Waf-1 without inhibiting cyclin-Cdk complexes. In both parental and Bcl-2-overexpressing cells, p21/Waf-1 was co-immunoprecipitated with ERK 1,2 and JNK 1,2, whereas p38 was found in complexes with p21/Waf-1 only in Bcl-2-overexpressing transformants. JNK 1,2 and p38 but not ERK 1,2 were detected in complexes with the exogenous Bcl-2. However, Bcl-2 did not affect phosphorylation of ERK 1,2, JNK 1,2 and p38. G1/S arrest induced by adriamycin and serum withdrawal (but not by IR) was accompanied by release of active forms of p38 from complexes with Bcl-2. We suggest that Bcl-2 restores stress-induced G1/S arrest without inhibiting cyclin-Cdk2 complexes and MAPK pathways.  相似文献   

9.
10.
In higher eukaryotes, cyclin E is thought to control the progression from G1 into S phase of the cell cycle by associating as a regulatory subunit with cdk2. To identify genes interacting with cyclin E, we have screened in Drosophila melanogaster for mutations that act as dominant modifiers of an eye phenotype caused by a Sevenless-CycE transgene that directs ectopic Cyclin E expression in postmitotic cells of eye imaginal disc and causes a rough eye phenotype in adult flies. The majority of the EMS-induced mutations that we have identified fall into four complementation groups corresponding to the genes split ends, dacapo, dE2F1, and Cdk2(Cdc2c). The Cdk2 mutations in combination with mutant Cdk2 transgenes have allowed us to address the regulatory significance of potential phosphorylation sites in Cdk2 (Thr 18 and Tyr 19). The corresponding sites in the closely related Cdk1 (Thr 14 and Tyr 15) are of crucial importance for regulation of the G2/M transition by myt1 and wee1 kinases and cdc25 phosphatases. In contrast, our results demonstrate that the equivalent sites in Cdk2 play no essential role.  相似文献   

11.
12.
p27, an important cell cycle regulator, blocks the G(1)/S transition in cells by binding and inhibiting Cdk2/cyclin A and Cdk2/cyclin E complexes (Cdk2/E). Ubiquitination and subsequent degradation play a critical role in regulating the levels of p27 during cell cycle progression. Here we provide evidence suggesting that both Cdk2/E and phosphorylation of Thr(187) on p27 are essential for the recognition of p27 by the SCF(Skp2/Cks1) complex, the ubiquitin-protein isopeptide ligase (E3). Cdk2/E provides a high affinity binding site, whereas the phosphorylated Thr(187) provides a low affinity binding site for the Skp2/Cks1 complex. Furthermore, binding of phosphorylated p27/Cdk2/E to the E3 complex showed positive cooperativity. Consistently, p27 is also ubiquitinated in a similarly cooperative manner. In the absence of p27, Cdk2/E and Cks1 increase Skp2 phosphorylation. This phosphorylation enhances Skp2 auto-ubiquitination, whereas p27 inhibits both phosphorylation and auto-ubiquitination of Skp2.  相似文献   

13.
F9 teratocarcinoma cells have a very short duration of the cell cycle with a short G1-period typical for early embryonic cells. The cells are capable of differentiating towards parietal endoderm cells after the treatment with retinoic acid (RA) and dibutyryl-cAMP (db-cAMP). This leads to changes in the cell cycle; in particular, G1-period becomes longer, and then differentiated F9 cells leave the cycle to stay in G0-phase. It was previously reported that undifferentiated F9 cells undergo no G1 arrest of the cell cycle after DNA damage (Malashicheva et al., 2000). In the present work mechanisms of accumulation of G1-phase cells during differentiation induced by retinoic acid and db-cAMP were studied. Kinase activity of cyclin-Cdk complexes regulating the G1/S transition was analyzed. In differentiated F9 cells, the activity of cyclin-Cdk complexes, comprising Cdk4 and Cdk2 kinases and cyclins A and E, was significantly decreased. A decrease of Cdk4 kinase activity correlates with a drop of the cyclin D1 content. The amount of p21/Waf1 and p27/Kip inhibitors of the cyclin-kinase complexes increased in differentiated F9 cells. p21/Waf1 protein, which undergoes proteasomal degradation in undifferentiated F9 cells, was shown to be stable in their differentiated derivatives. Besides, in differentiated F9 cells p21/Waf1 and p27/Kip proteins can be detected with Cdk4/Cdk2-cyclin E complexes, in contrast to undifferentiated cells. Thus, we suggest that a G1/G0 block of the cell cycle taking place upon differentiation of F9 cells is likely to be caused by a decrease in cyclin-kinase activity due to stabilization and accumulation of p21/Waf1 and p27/Kip inhibitors and to their ability to associate with Cdk-cyclin complexes.  相似文献   

14.
The protein kinase Akt is activated by growth factors and promotes cell survival and cell cycle progression. Here, we demonstrate that Akt phosphorylates the cell cycle inhibitory protein p21(Cip1) at Thr 145 in vitro and in intact cells as shown by in vitro kinase assays, site-directed mutagenesis, and phospho-peptide analysis. Akt-dependent phosphorylation of p21(Cip1) at Thr 145 prevents the complex formation of p21(Cip1) with PCNA, which inhibits DNA replication. In addition, phosphorylation of p21(Cip1) at Thr 145 decreases the binding of the cyclin-dependent kinases Cdk2 and Cdk4 to p21(Cip1) and attenuates the Cdk2 inhibitory activity of p21(Cip1). Immunohistochemistry and biochemical fractionation reveal that the decrease of PCNA binding and regulation of Cdk activity by p21(Cip1) phosphorylation is not caused by altered intracellular localization of p21(Cip1). As a functional consequence, phospho-mimetic mutagenesis of Thr 145 reverses the cell cycle-inhibitory properties of p21(Cip1), whereas the nonphosphorylatable p21(Cip1) T145A construct arrests cells in G(0) phase. These data suggest that the modulation of p21(Cip1) cell cycle functions by Akt-mediated phosphorylation regulates endothelial cell proliferation in response to stimuli that activate Akt.  相似文献   

15.
16.
The antiproliferative effect of human bcl-2 gene transferred to E1A + c-Ha-ras-transformed rat embryo fibroblasts, which are characterized by the absence of cell cycle checkpoints after damage and by a high proapoptotic sensitivity was studied. Ionizing irradiation, adriamycin treatment, and serum starvation were shown to induce G1/S arrest in E1A + c-Ha-ras-transformants. Bcl-2 antiproliferative effect in E1A + c-Ha-ras-transformants was not associated with alterations in Cdk2, cyclin E and A contents. G1/S arrest following irradiation or serum starvation was accompanied by a decrease in kinase activity associated with cyclin E-cdk2, whereas G1/S arrest in tetraploid subpopulation after adriamycin treatment did not correlate with a decrease in cyclin E-associated kinase activity. Cyclin A-associated kinase activity did not decrease after any used treatment. Transfection of bcl-2 in E1A + c-Ha-ras-transformants resulted in elevated expression of cyclin-cdk complexes inhibitor p21/Waf-1, but not p27/Kip. Damaging agents caused p21/Waf-1 and p27/Kip accumulation, but bcl-2 overexpression did not restore functions of these inhibitors, since p21/Waf-1 and p27/Kip were unable to suppress cyclin-cdk complexes activity after damage. These results suggest that bcl-2 transfection in E1A + c-Ha-ras-transformants is likely to result in irradiation- or serum starvation-induced G1/S arrest accomplished by a selective decrease in cyclin E-associated kinase activity. Adriamycin-induced G1/S arrest seems to be realized via cyclin-cdk complexes activity-independent way involving antiproliferative targets downstream of cyclin E-cdk2 and cyclin A-cdk2 complexes.  相似文献   

17.
p40MO15, a cdc2-related protein, is the catalytic subunit of the kinase (CAK, cdk-activating kinase) responsible for Thr161/Thr160 phosphorylation and activation of cdk1/cdk2. We have found that strong overexpression of p40MO15 only moderately increases CAK activity in Xenopus oocytes, indicating that a regulatory CAK subunit (possibly a cyclin-like protein) limits the ability to generate CAK activity in p40MO15 overexpressing oocytes. This 36 kDa subunit was microsequenced after extensive purification of CAK activity. Production of Xenopus CAK activity was strongly reduced in enucleated oocytes overexpressing p40MO15 and p40MO15 shown to contain a nuclear localization signal required for nuclear translocation and generation of CAK activity. p40MO15 was found to be phosphorylated on Ser170 and Thr176 by proteolytic degradation, radiosequencing of tryptic peptides and mutagenesis. Thr176 phosphorylation is required and Ser170 phosphorylation is dispensable for p40MO15 to generate CAK activity upon association with the 36 kDa regulatory subunit. Finally, Thr176 and Ser170 phosphorylations are not intramolecular autophosphorylation reactions. Taken together, the above results identify protein-protein interactions, nuclear translocation and phosphorylation (by an unidentified kinase) as features of p40MO15 that are required for the generation of active CAK.  相似文献   

18.
p27Kip1 is an essential cell cycle inhibitor of Cyclin-dependent kinases. Ubiquitin-mediated proteolysis of p27Kip1 is an important mechanism for activation of Cyclin E-Cdk2 and facilitates G1/S transition. Ubiquitination of p27 is primarily catalyzed by a multisubunit E3 ubiquitin ligase, SCF(Skp2), and requires an adapter protein Cks1. In addition, phosphorylation of p27 at Thr187 by Cyclin E and Cdk2 is also essential for triggering substrate ubiquitination. Here we investigate the molecular mechanism of p27 ubiquitination. We show that Cyclin E-Cdk2 is essential for targeting the p27 substrate to SCF(Skp2). Direct physical contact between Cyclin E but not Cdk2 and p27 is required for p27 recruitment to SCF(Skp2). In a search for positively charged amino acid residues that may be involved in recognition of the Thr187 phosphate group, we found that Arg306 of Skp2 is required for association and ubiquitination of phosphorylated p27 but dispensable for ubiquitination of unphosphorylated p21. Thus, our data unravel the molecular organization of the ubiquitination complex that catalyzes p27 ubiquitination and provide unique insights into the specificity of substrate recognition by SCF(Skp2).  相似文献   

19.
20.
p33cdk2 is a serine-threonine protein kinase that associates with cyclins A, D, and E and has been implicated in the control of the G1/S transition in mammalian cells. Recent evidence indicates that cyclin-dependent kinase 2 (Cdk2), like its homolog Cdc2, requires cyclin binding and phosphorylation (of threonine-160) for activation in vivo. However, the extent to which mechanistic details of the activation process are conserved between Cdc2 and Cdk2 is unknown. We have developed bacterial expression and purification systems for Cdk2 and cyclin A that allow mechanistic studies of the activation process to be performed in the absence of cell extracts. Recombinant Cdk2 is essentially inactive as a histone H1 kinase (< 4 x 10(-5) pmol phosphate transferred.min-1 x microgram-1 Cdk2). However, in the presence of equimolar cyclin A, the specific activity is approximately 16 pmol.mon-1 x microgram-1, 4 x 10(5)-fold higher than Cdk2 alone. Mutation of T160 in Cdk2 to either alanine or glutamic acid had little impact on the specific activity of the Cdk2/cyclin A complex: the activity of Cdk2T160E was indistinguishable from Cdk2, whereas that of Cdk2T160A was reduced by five-fold. To determine if the Cdk2/cyclin A complex could be activated further by phosphorylation of T160, complexes were treated with Cdc2 activating kinase (CAK), purified approximately 12,000-fold from Xenopus eggs. This treatment resulted in an 80-fold increase in specific activity. This specific activity is comparable with that of the Cdc2/cyclin B complex after complete activation by CAK (approximately 1600 pmol.mon-1 x microgram-1). Neither Cdk2T160A/cyclin A nor Cdk2T160E/cyclin A complexes were activated further by treatment with CAK. In striking contrast with cyclin A, cyclin B did not directly activate Cdk2. However, both Cdk2/cyclin A and Cdk2/cyclin B complexes display similar activity after activation by CAK. For the Cdk2/cyclin A complex, both cyclin binding and phosphorylation contribute significantly to activation, although the energetic contribution of cyclin A binding is greater than that of T160 phosphorylation by approximately 5 kcal/mol. The potential significance of direct activation of Cdk2 by cyclins with respect to regulation of cell cycle progression is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号