首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Recent biochemical and metagenomic data indicate that not yet cultured Archaea that are closely related to methanogenic Archaea of the order of Methanosarcinales are involved in the anaerobic oxidation of methane in marine sediments. The DNA from the methanotrophic Archaea has been shown to harbor gene homologues for methyl-coenzyme M reductase, which in methanogenic Archaea catalyses the methane-forming reaction. In microbial mats catalyzing anaerobic oxidation of methane, this nickel enzyme has been shown to be present in concentrations of up to 10% of the total extracted proteins.  相似文献   

3.
Aims:  To screen a pair of primers suitable for denaturing gradient gel electrophoretic (DGGE) analysis of ruminal methanogenic Archaea and to detect the archaeal communities in the rumen of goat.
Methods and Results:  Nine primer pairs for 16S rDNA of methanogenic Archaea , including six for directed polymerase chain reaction (PCR) and three for nested PCR were first evaluated by PCR amplification of the total DNA from rumen fluids and bacteria. The DGGE analysis of rumen fluids was then conducted with three primer sets (344fGC/915r, 1106fGC/1378r and 519f/915rGC) of the nine pairs tested. Good separation and quality of patterns were obtained in DGGE analysis with primer pairs 1106fGC/1378r and 519f/915rGC. A total of 40 DNA fragments were excised from the DGGE gels and their sequences were determined. All fragments belonged to methanogenic Archaea while primer pair 519f/915rGC had better amplification ranges than the other two primer pairs.
Conclusions:  The procedure of DGGE analysis with primer pair 519f/915rGC was more suitable for investigating methanogenic archaeal community in the rumen. The dominant methanogenic Archaea in the rumen of goat was Methanobrevibacter sp. and an unidentified methanogenic Archaea .
Significance and Impact of the Study:  One pair of primers suitable for DGGE analysis of ruminal methanogenic Archaea was obtained and the molecular diversity of ruminal methanogenic Archaea in goat was investigated by PCR-DGGE.  相似文献   

4.
古丸菌纲(Archaeoglobi)是广古菌门下的纲级分类单元,包含古丸菌(Archaeoglobus)、地丸菌(Geoglobus)和铁丸菌(Ferroglobus)三个属,所属菌株均是严格嗜热厌氧菌,主要分布于海洋、陆地热液系统和油田环境中。Archaeoglobus属下的微生物是一类以硫酸盐、亚硫酸盐或硫代硫酸盐为电子受体代谢生成硫化氢(H2S)的化能自养或氢营养型微生物;而Geoglobus和Ferroglobus的成员则主要还原硝酸盐和铁离子。Archaeoglobi地理分布广泛,在元素生物地球化学循环过程中发挥着重要作用,是目前微生物生态学研究的一个热点。在进化方面,Archaeoglobi菌和产甲烷古菌具有较高的亲缘关系;同时,Archaeoglobi基因组中保留着部分产甲烷途径上的功能基因,最新研究表明部分未培养的Archaeoglobi基因组中含有完整的产甲烷通路。这些证据都表明Archaeoglobi菌的基因组特征可能是产甲烷古菌向硫酸盐还原菌进化的活化石。本文梳理了目前发现的11株Archaeoglobi菌株的生理生化特征和基因组分析结果,从化能自养、化能异养、硫化物呼吸、产乙酸、产甲烷等方面综述了已分离的Archaeoglobi菌的代谢特征,并基于宏基因组信息分析了未培养的Archaeoglobi菌基因组中的潜在代谢功能,为进一步分离培养此类未培养厌氧微生物提供理论指导。  相似文献   

5.
Microbial communities involved in biogas production from wheat straw as the sole substrate were investigated. Anaerobic digestion was carried out within an up-flow anaerobic solid-state (UASS) reactor connected to an anaerobic filter (AF) by liquor recirculation. Two lab-scale reactor systems were operated simultaneously at 37 °C and 55 °C. The UASS reactors were fed at a fixed organic loading rate of 2.5 g L−1 d−1, based on volatile solids. Molecular genetic analyses of the bacterial and archaeal communities within the UASS reactors (digestate and effluent liquor) and the AFs (biofilm carrier and effluent liquor) were conducted under steady-state conditions. The thermophilic UASS reactor had a considerably higher biogas and methane yield in comparison to the mesophilic UASS, while the mesophilic AF was slightly more productive than the thermophilic AF. When the thermophilic and mesophilic community structures were compared, the thermophilic system was characterized by a higher Firmicutes to Bacteroidetes ratio, as revealed by 16S rRNA gene (rrs) sequence analysis. The composition of the archaeal communities was phase-separated under thermophilic conditions, but rather stage-specific under mesophilic conditions. Family- and order-specific real-time PCR of methanogenic Archaea supported the taxonomic distribution obtained by rrs sequence analysis. The higher anaerobic digestion efficiency of the thermophilic compared to the mesophilic UASS reactor was accompanied by a high abundance of Firmicutes and Methanosarcina sp. in the thermophilic UASS biofilm.  相似文献   

6.
The partial purification and basic biochemical characterization of the RNase P holoenzymes of two species of methanogenic Archaea, Methanothermobacter thermoautotrophicus (previously Methanobacterium thermoautotrophicum strain deltaH) and Methanococcus jannaschii, are described. The properties of these enzymes, particularly buoyant density in Cs2SO4 and recent information about the subunit composition of the archaeal enzymes, suggest that RNase P enzymes in Archaea are much more alike than earlier studies in Sulfolobus acidocaldarius and Haloferax volcanii suggested.  相似文献   

7.
Abstract Conditions have been optimized for colonization of fastidiously anaerobic microorganisms on solidified plating medium incubated in modified canning jars. Two species of methanogenic Archaea, the mesophilic, hydrogen utilizer Methanococcus maripaludis and the moderately thermophilic methylotroph Methanosarcina thermophila , were grown with high efficiency on agar-solidified medium in petri plates. Maximum colony size and plating efficiencies of 50–100% of total cell counts were obtained by optimizing inoculation method, H2S concentrations, and agar moisture content. The simple modifications required provide a readily available source of inexpensive anaerobic growth vessels for investigations requiring colonization of methanogens on solidified plating medium.  相似文献   

8.
The distribution of Archaea and methanogenic, methanotrophic and sulfate-reducing communities in three Atlantic ultramafic-hosted hydrothermal systems (Rainbow, Ashadze, Lost City) was compared using 16S rRNA gene and functional gene (mcrA, pmoA and dsrA) clone libraries. The overall archaeal community was diverse and heterogeneously distributed between the hydrothermal sites and the types of samples analyzed (seawater, hydrothermal fluid, chimney and sediment). The Lost City hydrothermal field, characterized by high alkaline warm fluids (pH>11; T<95 °C), harbored a singular archaeal diversity mostly composed of unaffiliated Methanosarcinales. The archaeal communities associated with the recently discovered Ashadze 1 site, one of the deepest active hydrothermal fields known (4100 m depth), showed significant differences between the two different vents analyzed and were characterized by putative extreme halophiles. Sequences related to the rarely detected Nanoarchaeota phylum and Methanopyrales order were also retrieved from the Rainbow and Ashadze hydrothermal fluids. However, the methanogenic Methanococcales was the most widely distributed hyper/thermophilic archaeal group among the hot and acidic ultramafic-hosted hydrothermal system environments. Most of the lineages detected are linked to methane and hydrogen cycling, suggesting that in ultramafic-hosted hydrothermal systems, large methanogenic and methanotrophic communities could be fuelled by hydrothermal fluids highly enriched in methane and hydrogen.  相似文献   

9.
The phylogenetic analysis of dominant microbial populations in 8-year-old refuse samples was done in terms of the whole Bacterial and Archaeal domains. The results indicated that the Bacterial 16S rRNA genes sequences from the aged refuse were largely affiliated with the genus Bacillus, and that more than 60 % of the Archaeal sequences were closely related to the methanogenic archaeon. Some inferentially identified extremophilic organisms, particularly alkaliphiles and/or halophiles, were noted to be present in the aged refuse. Moreover, molecular evidence for the occurrence of ammonia-oxidizing Archaea in aged refuse was reported, which opens up avenues for elucidating its role in ammonia transformation in landfill systems. It seems reasonable to assume that the highly complex environment within the landfill systems may select for microbial populations with versatile metabolism and strong adaptation. These findings underline the need for further biochemical and ecological study of these organisms in aged refuse.  相似文献   

10.
The bacterial and archaeal community structure was examined in two methanogenic anaerobic digestion processes degrading organic household waste at mesophilic (37 degrees C) and thermophilic (55 degrees C) temperatures. Analysis of bacterial clone libraries revealed a predominance of Bacteroidetes (34% of total clones) and Chloroflexi (27%) at the mesophilic temperature. In contrast, in the thermophilic clone library, the major group of clones were affiliated with Thermotogae (61%). Within the domain Archaea, the phyla Euryarchaeota and Crenarchaeota were both represented, the latter only at the mesophilic temperature. The dominating archaeons grouped with Methanospirillum and Methanosarcina species at the mesophilic and thermophilic temperature, respectively. Generally, there was a higher frequency of different sequences at the lower temperature, suggesting a higher diversity compared to the community present at the thermophilic temperature. Furthermore, it was not only the species richness that was affected by temperature, but also the phylogenetic distribution of the microbial populations.  相似文献   

11.
In the present study nine promising primer sets, targeting Archaea and methanogenic Archaea in particular, were evaluated in silico, in vitro and in situ concerning specificity, accuracy and applicability in end-point (ep-) and especially quantitative (q-)PCR research. The main goal was to adapt and evaluate already adapted primer sets, which were partially designed in combination with TaqMan probes, in substantially cheaper SYBR Green-based qPCR applications. An initial 16S rRNA gene bank-based in silico evaluation revealed high coverage potentials for all primers within targeted groups, ranging from 71 to 90 %, except the Methanosaeta specific set showing a low potential of 37 %. Mentionable cross-reacting potentials could be detected for the Methanothermobacter, Methanomicrobiales and Methanoculleus sets. The in vitro evaluation with selected reference organisms revealed a specific behavior for most primer sets, while the Methanosarcina and Methanothermobacter sets showed most problematic cross-reactions in epPCR application. We were able to show that primers for detecting the total archaeal community, methanogenic orders Methanosarcinales, Methanobacteriales, Methanococcales and the genus Methanoculleus performed in a highly specific way and allowed an accurate quantification of targeted organisms without the use of expensive TaqMan probes. However, primer pairs designed for detecting Methanomicrobiales, Methanothermobacter, Methanosarcina and Methanosaeta are not suitable for SYBR Green applications. The reliability of in situ quantifications was assessed for a typical methanogenic community, derived from a thermophilic fermenter, and confirmed via denaturing gradient gel band quantification and sequencing. Thereby, we revealed high abundances of methanogenic Archaea, mainly comprising Methanoculleus and Methanosarcinales, while Methanobacteriales only formed a minor fraction.  相似文献   

12.
The hydrothermal fluid chemistry at El Tatio Geyser Field (ETGF) in northern Chile suggests that biogenic CO2–CH4 cycling may play an important role in water chemistry, and relatively low sulfate (0.6–1 mM) and high molecular hydrogen (H2) concentrations (67–363 nM) suggest that methanogenic Archaea are present in ETGF microbial mats. In this study, δ13C analysis of dissolved inorganic carbon and methane was not indicative of biogenic methane production (δ13CCH4 values ranging from ?15‰ to ?5.3‰); however, methanogenic Archaea were successfully cultured from each of the hydrothermal sites sampled. Sanger sequencing using universal Archaea primers identified putative methanogenic orders with varying metabolic capabilities, including Methanobacteriales, Methanomicrobiales and Methanosarcinales.  相似文献   

13.
The bacterial community structure of a fluidized-bed reactor fed by vinasses (wine distillation waste) was analyzed. After PCR amplification, four small-subunit (SSU) rDNA clone libraries of Bacteria, Archaea, Procarya, and Eucarya populations were established. The community structure was determined by operational taxonomic unit (OTU) phylogenetic analyses of 579 partial rDNA sequences (about 500 bp long). A total of 146 OTUs were found, comprising 133, 6, and 7 from the Bacteria, Archaea, and Eucarya domains, respectively. A total of 117 bacterial OTU were affiliated with major phyla: low-G+C gram-positive bacteria, Cytophaga-Flexibacter-Bacteroides, Proteobacteria, high-G+C gram-positive bacteria, and Spirochaetes, where the clone distribution was 34, 26, 17, 6, and 4%, respectively. The other 16 bacterial OTUs represent 13% of the clones. They were either affiliated with narrow phyla such as Planctomyces-Chlamydia, green nonsulfur bacteria, or Synergistes, or deeply branched on the phylogenetic tree. A large number of bacterial OTUs are not closely related to any other hitherto determined sequences. The most frequent bacterial OTUs represents less than 5% of the total bacterial SSU rDNA sequences. However, the 20 more frequent bacterial OTUs describe at least 50% of these sequences. Three of the six Archaea OTUs correspond to 95% of the Archaea population and are very similar to already known methanogenic species: Methanosarcina barkeri, Methanosarcina frisius, and Methanobacterium formicicum. In contrast, the three other Archaea OTUs are unusual and are related to thermophilic microorganisms such as Crenarchaea or Thermoplasma spp. Five percent of the sequences analyzed were chimeras and were removed from the analysis.  相似文献   

14.
15.
After immobilization of anaerobes on polyurethane foam in a thermophilic, fixed-bed, anaerobic digester supplied with acetate, the results of real-time PCR analysis indicated that the major immobilized methanogenic archaea were Methanosarcina spp., and that the major free-living methanogenic archaea were Methanosarcina and Methanobacterium spp. 16S rRNA gene densities of Methanosarcina spp. and Methanobacterium spp. immobilized on the polyurethane foam were 7.6x10(9) and 2.6x10(8) copies/cm3, respectively. Immobilized methanogenic archaea could be concentrated 1000 times relative to those in the original anaerobically digested sludge from a completely mixed thermophilic digester supplied with cattle waste. On the other hand, immobilized bacteria could be concentrated only 10 times. The cell densities of the immobilized methanogenic archaea and bacteria were higher than those of the free-living methanogenic archaea and bacteria in the reactor. The results of clone analysis indicate that the major methanogenic archaea of the original thermophilic sludge are members of the order Methanomicrobiales, and that the major methanogenic archaea immobilized on the polyurethane foam are Methanosarcina spp., and those of the liquid phase are Methanobacterium spp. The results of the real time PCR analysis approximately agree with those of the clone analysis. These results indicate that real-time PCR analysis is useful for quantitatively describing methanogenic communities.  相似文献   

16.
17.
摘要:遗传操作系统,是研究基因和基因产物功能的一个极为重要的工具。超嗜热古菌遗传操作系统方面的研究落后于甲烷菌及嗜盐古菌中的研究,主要原因是选择标记的缺乏。然而,近十年来,在以硫化叶菌(Sulfolobus)为代表的超嗜热泉古菌和Thermococcus kodakaraensis为代表的超嗜热广古菌中,遗传操作系统研究取得了很大的进展。本文主要对这两种超嗜热古菌的遗传操作系统进展以及应用进行概述。  相似文献   

18.
Background  Methanogenesis by methanogenic Archaea and sulfate reduction by sulfate reducing bacteria (SRB) are the major hydrogenotrophic pathways in the human colon. Methanogenic status of mammals is suggested to be under evolutionary rather than dietary control. However, information is lacking regarding the dynamics of hydrogenotrophic microbial communities among different primate species.
Methods  Rectal swabs were collected from 10 sooty mangabeys ( Cercocebus atys ) and 10 baboons ( Papio hamadryas ). The diversity and abundance of methanogens and SRB were examined using PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR).
Results  The DGGE results revealed that intestinal Archaea and SRB communities differ between mangabeys and baboons. Phylogenetic analyses of Archaea DGGE bands revealed two distinct clusters with one representing a putative novel order of methanogenic Archaea. The qPCR detected a similar abundance of methanogens and SRB.
Conclusions  Intestinal Archaea and SRB coexist in these primates, and the community patterns are host species-specific.  相似文献   

19.
The most probable horizontal gene transfer events in the evolution of Archaea are reconstructed based on the comparison of phylogenetic trees of housekeeping orthologous protein families with consensus phylogenies of Archaea. The existence of these phenomena suggests that the common ancestor of Archaea was of methanogenic and hyperthermophilic nature and dwelt in communities with a high level of ecological integration.  相似文献   

20.
The transport of proteins into and across hydrophobic membranes is an essential cellular process. The majority of proteins that are translocated in an unfolded conformation traverse the membrane by way of the universally conserved Sec pathway, whereas the twin arginine translocation pathway is responsible for the transport of folded proteins across the membrane. Structural, biochemical and genetic analyses of these processes in Archaea have revealed unique archaeal features, and have also provided a better understanding of these pathways in organisms of all domains. Further study of these pathways in Archaea might elucidate fundamental principles involved in each type of transport and could help determine their relative costs and benefits as well as evolutionary adaptations in protein secretion strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号