首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To determine the effect of hyperosmotic stress on the monoclonal antibody (MAb) production by calcium-alginate-immobilized S3H5/gamma2bA2 hybridoma cells, the osmolalities of medium in the MAb production stage were varied through the addition of NaCI. The specific MAb productivity (q(MAb)) of immobilized cells exposed to abrupt hyperosmotic stress (398 mOsm/kg) was increased by 55% when compared with that of immobilized cells in the control culture (286 mOsm/kg). Furthermore, this enhancement of q(MAb) was not transient. Abrupt increase in osmolality, however, inhibited cell growth, resulting in no increase in volumetric MAb productivity (r(MAb)). On the other hand, gradual increase in osmolality allowed further cell growth while maintaining the enhanced q(MAb) immobilized cells. The q(MAb) immobilized cells at 395 mOsm/kg was 0.661 +/- 0.019 mug/10(6) cells/h, which is almost identical to that of immobilized cells exposed to abrupt osmotic stress. Accordingly, the r(MAb) was increased by ca. 40% when compared with that in the control immobilized cell culture. This enhancement in i(MAb) of immobilized S3H5/gamma2bA2 hybridoma cells by applying gradual osmotic stress suggests the potential of using hyperosmolar medium in other perfusion culture systems for improved MAb production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

2.
During batch cultivation of the I.13.17. hybridoma cell line, there is a 15 to 20-fold decrease in the levels of cytoplasmic and membrane-bound mAb, and a 7 to 10-fold decrease in the cellular levels of kappa and gamma chain mRNAs, as the cells pass from the exponential into the decline phase of growth. The profile of the specific mAb production rate does not correlate with the kinetics of either the cytoplasmic mAb or the specific mRNAs throughout the culture. Flow cytometry analyses have revealed that dead cells, which account for 40 to 70% of total cells during the decline phase, might significantly interfere with the determination of cytoplasmic mAb levels of cell-lysates ELISA and with the calculation of the specific mAb production rate. Possible influences of these parameters on mAb synthesis and secretion during hybridoma batch culture are discussed.  相似文献   

3.
4.
5.
Hybridoma volume and surface membrane structure were found to vary as a function of specific growth rate using a method of cell recycle with continuous medium perfusion to vary growth rate. Mean hybridoma volume determined at constant osmolality by both electronic particle counting and scanning electron microscopic (SEM) methods indicated that rapidly growing cells are significantly larger than very slowly growing cells. We have previously determined that during both rapid and slow growth over a range of L-glutamine provision rates (Gln PR) that specific monoclonal antibody (MoAb) secretion rate was not changed. In this study a constant MoAb secretion rate per unit of membrane area was found which may indicate that changing membrane area is not a rate-determining factor in MoAb secretion. SEM methods were of limited use for accurate determination of cell volume due to cell shrinkage and large coefficients of variations. In spite of this limitation, SEM stereology methods were useful in confirming that cells remained spherical over a wide range of specific growth rates and that hybridoma cells were not circular. Sequential SEM observations also revealed that surface membrane structure of the 9.2.27 murine hybridoma investigated was correlated with growth rate. Under conditions of very slow growth, hybridoma surface microvilli density appeared to be significantly reduced.  相似文献   

6.
A novel wave bioreactor-perfusion culture system was developed for highly efficient production of monoclonal antibody IgG2a (mAb) by hybridoma cells. The system consists of a wave bioreactor, a floating membrane cell-retention filter, and a weight-based perfusion controller. A polyethylene membrane filter with a pore size of 7 microm was floating on the surface of the culture broth for cell retention, eliminating the need for traditional pump around flow loops and external cell separators. A weight-based perfusion controller was designed to balance the medium renewal rate and the harvest rate during perfusion culture. BD Cell mAb Medium (BD Biosciences, CA) was identified to be the optimal basal medium for mAb production during batch culture. A control strategy for perfusion rate (volume of fresh medium/working volume of reactor/day, vvd) was identified as a key factor affecting cell growth and mAb accumulation during perfusion culture, and the optimal control strategy was increasing perfusion rate by 0.15 vvd per day. Average specific mAb production rate was linearly corrected with increasing perfusion rate within the range of investigation. The maximum viable cell density reached 22.3 x 105 and 200.5 x 105 cells/mL in the batch and perfusion culture, respectively, while the corresponding maximum mAb concentration reached 182.4 and 463.6 mg/L and the corresponding maximum total mAb amount was 182.4 and 1406.5 mg, respectively. Not only the yield of viable cell per liter of medium (32.9 x 105 cells/mL per liter medium) and the mAb yield per liter of medium (230.6 mg/L medium) but also the mAb volumetric productivity (33.1 mg/L.day) in perfusion culture were much higher than those (i.e., 22.3 x 105 cells/mL per liter medium, 182.4 mg/L medium, and 20.3 mg/L.day) in batch culture. Relatively fast cell growth and the perfusion culture approach warrant that high biomass and mAb productivity may be obtained in such a novel perfusion culture system (1 L working volume), which offers an alternative approach for producing gram quantity of proteins from industrial cell lines in a liter-size cell culture. The fundamental information obtained in this study may be useful for perfusion culture of hybridoma cells on a large scale.  相似文献   

7.
To investigate the influence of hyperosmolar basal media on hybridoma response, S3H5/γ2bA2 and DB9G8 hybridomas were cultivated in a batch mode using hyperosmolar basal media resulting from additional sodium chloride supplementation. The basal media used in this study were IMDM, DMEM, and RPMI 1640, all of which are widely used for hybridoma cell culture. In IMDM, two hybridomas showed different responses to hyperosmotic stress regarding specific MAb productivity (q MAb), though they showed similar depression of cell growth in hyperosmolar media. Unlike S3H5/γ2bA2 hybridoma, the q MAb of DB9G8 hybridoma was not enhanced significantly around 390 mOsm kg?1. The variation of basal media influenced DB9G8 hybridoma response to hyperosmotic stress regarding q MAb. In IMDM, the q MAb of DB9G8 hybridoma was increased by more than 200% when the osmolality increased from 281 to 440 mOsm/kg. However, in RPMI 1640 and DMEM, similar amplitude of osmolality increase resulted in less than 100% increase in q MAb. The variation of basal media also influenced the cell growth in hyperosmolar medium. Both hybridomas were more tolerant against hyperosmotic stress in DMEM than in IMDM, which was found to be due to the high osmolality of standard DMEM. The osmolalities of standard IMDM and DMEM used for inocula preparation were 281 and 316 mOsm kg?1, respectively. Thus, when the cells were cultivated at 440 mOsm kg?1, the cells in IMDM experienced higher osmotic shock than in DMEM. By using the inoculum prepared at 317 mOsm kg?1 in IMDM, S3H5/γ2bA2 cell growth at 440 mOsm kg?1 in IMDM was comparable to that in DMEM. Taken together, the results obtained from this study show that the selection of basal media is an important factor for MAb production by employing hyperosmotic stress.  相似文献   

8.
A three compartment model (ER --> Golgi --> extracellular medium) is used here to describe the interorganelle transport and final secretion of an IgG(2a) monoclonal antibody (MAb) in 9.2.27 murine hybridoma cells. Model simulations of pulse-chase and continuous labeling experiments are used to gain a better understanding of the kinetics of MAb interorganelle traffic. Simulation results for the continuous labeling case compare well with experimental data obtained during continuous labeling of 9.2.27 hybridoma cells. Incorporation of this compartmental transport model into our previously developed model of MAb synthesis and assembly can provide a useful tool for analyzing the dynamics and regulation of the complete antibody secretory pathway under different growth and/or nutritional conditions.  相似文献   

9.
Genome‐scale modeling of mouse hybridoma cells producing monoclonal antibodies (mAb) was performed to elucidate their physiological and metabolic states during fed‐batch cell culture. Initially, feed media nutrients were monitored to identify key components among carbon sources and amino acids with significant impact on the desired outcome, for example, cell growth and antibody production. The monitored profiles indicated rapid assimilation of glucose and glutamine during the exponential growth phase. Significant increase in mAb concentration was also observed when glutamine concentration was controlled at 0.5 mM as a feeding strategy. Based on the reconstructed genome‐scale metabolic network of mouse hybridoma cells and fed‐batch profiles, flux analysis was then implemented to investigate the cellular behavior and changes in internal fluxes during the cell culture. The simulated profile of the cell growth was consistent with experimentally measured specific growth rate. The in silico simulation results indicated (i) predominant utilization of glycolytic pathway for ATP production, (ii) importance of pyruvate node in metabolic shifting, and (iii) characteristic pattern in lactate to glucose ratio during the exponential phase. In future, experimental and in silico analyses can serve as a promising approach to identifying optimal feeding strategies and potential cell engineering targets as well as facilitate media optimization for the enhanced production of mAb or recombinant proteins in mammalian cells. Biotechnol. Bioeng. 2009;102: 1494–1504. © 2008 Wiley Periodicals, Inc.  相似文献   

10.
由于各种疾病在全球范围内的肆虐,国际市场对重组腺病毒载体(adenoviral vector,Adv)疫苗的需求量急剧增加,而工艺研究是解决这一问题的有效手段之一。在细胞接毒前施加高渗胁迫可以提高分批培养模式下的Adv产量,新兴的灌流培养也可以显著提高Adv的产量。将高渗胁迫工艺与灌流培养相结合,有望进一步提升高细胞密度生产过程中的Adv产量。本研究利用摇瓶结合拟灌流培养作为生物反应器灌流培养的缩小模型,使用渗透压为300–405 mOsm的培养基研究了高渗胁迫对细胞生长和Adv生产的影响。结果显示,在细胞生长阶段使用370 mOsm的高渗透压培养基,在病毒生产阶段使用300 mOsm的等渗透压培养基的灌流培养工艺有效地提高了Adv的产量。进一步研究发现这可能归因于病毒复制后期HSP70蛋白的表达量增加。将这种工艺放大至生物反应器中,Adv的产量达到3.2×1010 IFU/mL,是传统灌流培养工艺的3倍。本研究首次将高渗胁迫工艺与灌流培养相结合的策略应用于HEK 293细胞生产Adv,同时揭示了高渗胁迫工艺增产Adv的可能原因,为HEK 293细胞生产其他类型Adv的工艺优化提供了借鉴。  相似文献   

11.
Pulse chase experiments of two mouse hybridoma lines were conducted in order to elucidate the kinetics of monoclonal antibody (mAb) production and secretion during different stages of batch cultures. The results indicate that a stock of cytoplasmic IgG exists in hybridoma cells and that the concentration of this stored IgG depends on the cell line used and the stage of the culture. This stored IgG can be released by dying cells, and a certain quantity of the secreted IgG is derived from this source. However, only between 0.3 and 9.3% of the released IgG of U0208 (average: 2.08%) and between 2.08 and 25.8% of the IgG, released from I.13.17 (average: 6.95%), were of storage origin, calculated on culture viability and intracellular IgG-stock. Comparing the accumulation of radio-labelled IgG (IgG*) in the supernatant with the reduction of cytoplasmic IgG* during the chase experiments, the percentages range between 14 and 50%, somewhat higher values probably caused by changes in the culture conditions. These changes led to a release of IgG during the chase experiments, which accounts for about 20–25% of the totally secreted IgG.It could be established that during the logarithmic growth phase of batch cultures a certain percentage of synthesized IgG was not released but stored within the cells: for U0208: 0.3–4.5%, for I.13.17: 1–7.6%. During the stationary and death phase, this percentage ranged between 1.5 and 20% for U0208 and between 0.5 and 8.1% for I.13.17. Finally, the chase experiments also revealed that the time of synthesis, assembly, and secretion of mAbs does not vary much during the different phases of batch cultures, and is within the range of 1.5 and 3 hrs.  相似文献   

12.
The kinetics of monoclonal antibody synthesis and secretion have been studied in synchronous and asynchronous mouse hybridoma cell cultures. Pulse-labelling of IgG followed by immunoprecipitation and quantitation of synthesized and secreted IgG in synchronous cultures show maximum production during G1/S phases. Secretion takes place through exocytotic release of vesicle contents. Pulse-chase experiments show that 71% of the synthesized IgG is secreted within 8 h of the pulsing period and only a further 4% is secreted by 22 h. Higher specific antibody production (QA) is obtained if (a) cells are arrested and then maintained in G1/S phases, (b) viability is decreased during the death phase of batch culture, (c) the dilution rate is decreased in continuous culture or (d) cells are subjected to hydrodynamically induced stress. The increase in QA in all these cases is mainly due to the passive release of the accumulated intracellular antibody. DNA and protein synthetic activity peak during the early exponential phase and decline rapidly during mid and late exponential and death phases. Metabolic activity however peaks up to 20 h after the peak in DNA synthesis, and declines similarly during the death phase. The data are consistent with the idea that slow growth and higher death rates increase QA and that Ig secretion is probably subject to complex intracellular control.  相似文献   

13.
Previous experiments have shown that population average surface lgG content is correlated with the specific antibody production rates of batch hybridoma cultures. Therefore, surface associated lgG content of single hybridoma cells might indicate antibody secretion rates of individual cells. Moreover, the surface lgG content should reflect the pattern of secretion rates during the cell cycle. To probe for lgG secretion rates during the cellcycle, a double staining procedure has been developed allowing simultaneousflow cytometric analysis of surface lgG content and DNA content of murine hybridoma cells. Crosslinking of the surface associated immunofluorescence with the cell by paraformaldehyde fixation permits subsequent DNA staining without loss of immunofluorescence. The optimized protocol has been used to determine the pattern of the surface lgG fluorescence as a function of the cell cycle position. It is highest during the G2+M cell cycle phase and the experimental data are in excellent agreement with the previously predicted secretion pattern during the cell cycle. (c) 1995 John Wiley & Sons Inc.  相似文献   

14.
Much of the current cell technology has enabled increased antibody production levels due to judicious nutrient feeding to raise cell densities and design better bioreactors. This study demonstrates that hybridomas can be hyperstimulated to produce higher immunoglobulin (lg) levels by suppressing cell growth and increasing culture longevity through adaptation to higher osmolarity media and addition of sodium butyrate. Prior to adaptation, cells placed in higher osmotic pressures (350 and 400 mOsm) were severely suppressed in growth down to 25% of the control (300 mOsm), although total lg titers achieved were similar to the control, approximately 140 mg/L. After a week of adaptation to 350 and 400 mOsm media, cell growth was not as dramatically suppressed, but considerably higher lg levels were attained at these elevated osmolarities. The highest yield of 265 mg/L was obtained at 350 mOsm compared to 140 mg/L at 300 mOsm, while maximum viable cell numbers dropped from 35 x 10(5) cells/mL to 31 x 10(5) cells/mL and culture longevity was extended by 20 h more than the control. Sodium butyrate, known to enhance protein production in other cell types, was then supplemented at a range of concentrations between 0.01 and 0.4 mM to the 350 mOsm culture to further enhance the lg levels. Butyrate at a concentration of 0.1 mM, in combination with osmotic pressure at 350 mOsm, further elevated the lg levels to 350 mg/L. Concomitantly, maximum viable cell numbers were reduced to 22 x 10(5) cells/mL, but culture longevity was extended by 40 h in the 0.1 mM butyrate supplemented culture compared to the control condition. Specific antibody productivity, q(Mab), continued to stay high during the stationary phase and was further elevated during the decline phase: thus, overall lg levels can be increased by 2.3 times by combining osmotic pressure and butyrate treatment. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
Cell culture longevity in fed-batch culture of hybridomas is often limited by elevated medium osmolality caused by repeated nutrient feeding. Shotwise feeding of 10x Dulbecco's modified Eagle's medium (DMEM) concentrates elevated the osmolality of medium up to 540 mOsm/kg at the end of fed-batch culture of S3H5/gamma2bA2 hybridoma which is known to be lethal to most hybridomas. S3H5/gamma2bA2 hybridoma has been shown to grow without significant growth depression at 219 mOsm/kg in DMEM supplemented with 10% fetal bovine serum. To improve culture longevity in fed-batch cultures of S3H5/gamma2bA2 hybridoma, a hypoosmolar medium (223 mOsm/kg) was used as an initial basal medium. The use of hypoosmolar medium delayed the onset of severe cell death resulting from elevated osmolality and allowed one more addition of 10x DMEM concentrates to the culture. As a result, a final antibody concentration obtained was 121.5 microg/mL which is approximately 1.5-fold higher compared to fed-batch culture using a standard medium (335 mOsm/kg). When compared to batch culture, a more than 5-fold increase in the final antibody concentration was achieved. Taken together, the use of hypoosmolar medium as an initial medium in fed-batch culture improved culture longevity of S3H5/gamma2bA2 hybridoma, resulting in a substantial increase in the final antibody concentration.  相似文献   

16.
To investigate the response of hybridoma cells to hypoosmotic stress, S3H5/gamma2bA2 and DB9G8 hybridomas were cultivated in the hypoosmolar medium [Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% serum] resulting from sodium chloride subtraction. Both hybridomas showed similar responses to hypoosmotic stress in regard to cell growth and antibody production. The cell growth and antibody production at 276 mOsm/kg were comparable to those at 329 mOsm/kg (standard DMEM). Both cells grew well at 219 mOsm/kg, though their growth and antibody production were slightly decreased. When the osmolality was further decreased to 168 mOsm/kg, the cell growth did not occur. When subjected to hyperosmotic stress, both cells displayed significantly enhanced specific antibody productivity (q(Ab)). However, the cells subjected to hypoosmotic stress did not display enhanced q(Ab). Taken together, both hyperosmotic and hypoosmotic stresses depressed the growth of S3H5/gamma2bA2 and DB9G8 hybridomas. However, their response to hypoosmotic stress in regard to q(Ab) was different from that to hyperosmotic stress. (c) 1997 John Wiley & Sons, Inc. Biotechnol Biong 55: 565-570, 1997.  相似文献   

17.
18.
19.
To test the feasibility of using hyperosmolar medium for improved antibody production in a long-term, repeated fed-batch culture, the influence of various culture conditions (serum concentration and cultivation method) on the hybridoma cells' response to hyperosmotic stress resulting from sodium chloride addition was first investigated in a batch culture. The degree of cell growth depression resulting from hyperosmotic stress was dependent on serum concentrations and cultivation methods (static and agitated cultures). Depression of cell growth was most significant in agitated cultures with low serum concentration. However, regardless of serum concentrations and cultivation methods used, the hyperosmotic stress significantly increased specific antibody productivity (q MAb). Increasing osmolality from 284 to 396 mOsm kg–1 enhanced the qMAb in agitated cultures with 1% serum by approximately 124% while the similar osmotic stress enhanced the q MAb in static cultures with 10% serum by approximately 153%. Next, to determine whether this enhanced qMAb resulting from hyperosmotic stress can be maintained after adaptation, long-term, repeated-fed batch cultures with hyperosmolar media were carried out. The cells appeared to adapt to hyperosmotic stress. When a hyperosmolar medium (10% serum, 403 mOsmkg–1) was used, the specific growth rate improved gradually for the first four batches and thereafter, remained constant at 0.040±0.003 (average ± standard deviation) hr–1 which is close to the value obtained from a standard medium (10% serum, 284 mOsmkg–1) in the batch culture. While the cells were adpating to hyperosmotic stress, the qMAb was gradually decreased from 0.388×10–6 to 0.265×10–6 g cell hr–1 and thereafter, remained almost constant at 0.272±0.014× 10–6 g cell–1 hr–1. However, this reduced q MAb after adaptation is still approximately 98% higher than the qMAb obtained from a standard medium in the batch culture.The authors would like to thank Dr.M. Kaminski for providing the hybridoma cell line used in this study. This work was supported by the Korea Science and Engineering Foundation.  相似文献   

20.
There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI) of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK) cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve), was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively) in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001), indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001) and untreated controls (p = 0.014) in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC) of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other groups. In conclusion, ve was the most reliable radiological parameter for detecting response to intralesional NK cellular therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号